Solveeit Logo

Question

Physics Question on thermal properties of matter

Consider a pair of insulating blocks with thermal resistances R1R_1 and R2R_2 as shown in the figure. The temperature θ\theta at the boundary between the two blocks is

A

(θ1θ2vR1R2)/\left(\theta_{1}\,\theta_{2}v R_1 R_2\right)/ (θ1+θ2)(R1+R2)\left(\theta_{1}+\theta_{2}\right)\left(R_{1}+R_{2}\right)

B

(θ1R1+θ2R2)/(R1+R2)\left(\theta_{1}R_{1}+\theta_{2}R_{2}\right)/\left(R_{1}+R_{2}\right)

C

[(θ1+θ2)R1R2]/(R12+R22)\left[\left(\theta_{1}+\theta_{2}\right)R_{1}R_{2}\right]/\left(R^{2}_{1}+R^{2}_{2}\right)

D

(θ1R2+θ2R1)/(R1+R2)\left(\theta_{1}R_{2}+\theta_{2}R_{1}\right)/\left(R_{1}+R_{2}\right)

Answer

(θ1R2+θ2R1)/(R1+R2)\left(\theta_{1}R_{2}+\theta_{2}R_{1}\right)/\left(R_{1}+R_{2}\right)

Explanation

Solution

Rate of transmission of heat
=TemperaturedifferenceThermalResistance=\frac{Temperature\,difference}{Thermal\,Resistance}
dQdt=dθR\therefore \frac{dQ}{dt}=\frac{d\theta}{R}
Here, dQdt=(θθ2)R2=θ1θR1\frac{dQ}{dt}=\frac{\left(\theta-\theta_{2}\right)}{R_{2}}=\frac{\theta_{1}-\theta }{R_{1}}
θθ2R2=θ1θR1\Rightarrow \frac{\theta -\theta_{2}}{R_{2}}=\frac{\theta _{1}-\theta }{R_{1}}
R1θR1θ2=R2θ1R2θ\Rightarrow R_{1}\theta-R_{1}\theta_{2}=R_{2}\theta_{1}-R_{2}\theta
θ(R1+R2)=R2θ1+R1θ2\Rightarrow \theta\left(R_{1}+R_{2}\right)=R_{2}\theta_{1}+R_{1}\theta_{2}
θ=(R2θ1+R1θ2)(R1+R2)\therefore \theta=\frac{\left(R_{2}\theta_{1}+R_{1}\theta_{2}\right)}{\left(R_{1}+R_{2}\right)}