Solveeit Logo

Question

Question: Consider a pair of identical pendulums, which oscillate with equal amplitude independently such that...

Consider a pair of identical pendulums, which oscillate with equal amplitude independently such that when one pendulum is at its extreme position making an angle of 2° to the right with the vertical, the other pendulum makes an angle of 1° to the left of the vertical. The phase difference between the pendulums is

A

π2\frac { \pi } { 2 }

B

23π\frac { 2 } { 3 } \pi

C

32π\frac { 3 } { 2 } \pi

D

π\pi

Answer

23π\frac { 2 } { 3 } \pi

Explanation

Solution

Let θ1\theta _ { 1 } and θ2\theta _ { 2 } be the angular displacement of first and second pendulums respectively at an instantϕ1\phi _ { 1 } and ϕ2\phi _ { 2 } be the initial phases of the two pendulums.

Then

θ1=θ0sin(ωt+ϕ1)\theta _ { 1 } = \theta _ { 0 } \sin \left( \omega t + \phi _ { 1 } \right) …… (i)

And θ2=θ0sin(ωt+ϕ2)\theta _ { 2 } = \theta _ { 0 } \sin \left( \omega t + \phi _ { 2 } \right) …… (ii)

For first pendulum d

From (i) we get

2=2sin(ωt+ϕ1)2 = 2 \sin \left( \omega t + \phi _ { 1 } \right) or sin(ωt+ϕ1)=1\sin \left( \omega t + \phi _ { 1 } \right) = 1

Or ωt+ϕ1=90\omega \mathrm { t } + \phi _ { 1 } = 90 ^ { \circ } ….. (iii)

For second pendulum

From (ii), we get

1=2sin(ωt+ϕ2)- 1 = 2 \sin \left( \omega \mathrm { t } + \phi _ { 2 } \right) or sin(ωt+ϕ2)=12\sin \left( \omega \mathrm { t } + \phi _ { 2 } \right) = - \frac { 1 } { 2 }

Or sin(ωt+ϕ2)=sin(180+30)=sin210\sin \left( \omega t + \phi _ { 2 } \right) = \sin \left( 180 ^ { \circ } + 30 ^ { \circ } \right) = \sin 210 ^ { \circ }

ωt+ϕ2=210\therefore \omega \mathrm { t } + \phi _ { 2 } = 210 ^ { \circ } …… (iv)

\therefore subtracting (iii) from (iv), we get

(ωt+ϕ2)(ωt+ϕ1)=21090=120=2π3\left( \omega \mathrm { t } + \phi _ { 2 } \right) - \left( \omega \mathrm { t } + \phi _ { 1 } \right) = 210 ^ { \circ } - 90 ^ { \circ } = 120 ^ { \circ } = \frac { 2 \pi } { 3 }