Solveeit Logo

Question

Question: Consider a matrix $A = [a_{ij}]_{3 \times 3}$, where $a_{ij} = \begin{cases} i-j, & \text{if} \quad ...

Consider a matrix A=[aij]3×3A = [a_{ij}]_{3 \times 3}, where aij={ij,ifij=oddi2,ifij=even.a_{ij} = \begin{cases} i-j, & \text{if} \quad ij = \text{odd}\\ i^2, & \text{if} \quad ij = \text{even}. \end{cases}

If bijb_{ij} is cofactor of aija_{ij} in matrix A and dij=k=13aikbjkd_{ij} = \sum_{k=1}^{3} a_{ik}b_{jk}, then the value of det(dij)3\sqrt[3]{\det(d_{ij})} is equal to

A

4

B

24

C

-48

D

-24

Answer

-48

Explanation

Solution

The matrix A is given by A=[aij]3×3A = [a_{ij}]_{3 \times 3}, where aij={ij,ifij=oddi2,ifij=even.a_{ij} = \begin{cases} i-j, & \text{if} \quad ij = \text{odd}\\ i^2, & \text{if} \quad ij = \text{even}. \end{cases}

Let's determine the elements of the matrix A: The product ijij is odd if and only if both ii and jj are odd. The product ijij is even if either ii or jj (or both) is even.

For i=1i=1: a11a_{11}: 1×1=11 \times 1 = 1 (odd). a11=11=0a_{11} = 1-1 = 0. a12a_{12}: 1×2=21 \times 2 = 2 (even). a12=12=1a_{12} = 1^2 = 1. a13a_{13}: 1×3=31 \times 3 = 3 (odd). a13=13=2a_{13} = 1-3 = -2.

For i=2i=2: a21a_{21}: 2×1=22 \times 1 = 2 (even). a21=22=4a_{21} = 2^2 = 4. a22a_{22}: 2×2=42 \times 2 = 4 (even). a22=22=4a_{22} = 2^2 = 4. a23a_{23}: 2×3=62 \times 3 = 6 (even). a23=22=4a_{23} = 2^2 = 4.

For i=3i=3: a31a_{31}: 3×1=33 \times 1 = 3 (odd). a31=31=2a_{31} = 3-1 = 2. a32a_{32}: 3×2=63 \times 2 = 6 (even). a32=32=9a_{32} = 3^2 = 9. a33a_{33}: 3×3=93 \times 3 = 9 (odd). a33=33=0a_{33} = 3-3 = 0.

So, the matrix A is: A=(012444290)A = \begin{pmatrix} 0 & 1 & -2 \\ 4 & 4 & 4 \\ 2 & 9 & 0 \end{pmatrix}

We are given that bijb_{ij} is the cofactor of aija_{ij} in matrix A. We are asked to find the value of det(dij)3\sqrt[3]{\det(d_{ij})}, where dij=k=13aikbjkd_{ij} = \sum_{k=1}^{3} a_{ik}b_{jk}.

Let D be the matrix with elements dijd_{ij}. The expression dij=k=13aikbjkd_{ij} = \sum_{k=1}^{3} a_{ik}b_{jk} is the element in the ii-th row and jj-th column of the matrix product A(adj(A))TA (\text{adj}(A))^T, where adj(A)\text{adj}(A) is the adjugate matrix of A. The elements of adj(A)\text{adj}(A) are (adj(A))ij=bji(\text{adj}(A))_{ij} = b_{ji}. So, the elements of (adj(A))T(\text{adj}(A))^T are ((adj(A))T)ij=(adj(A))ji=bij((\text{adj}(A))^T)_{ij} = (\text{adj}(A))_{ji} = b_{ij}. Thus, dij=k=13aik((adj(A))T)kj=k=13aikbjkd_{ij} = \sum_{k=1}^{3} a_{ik} ((\text{adj}(A))^T)_{kj} = \sum_{k=1}^{3} a_{ik} b_{jk}.

Alternatively, we know the property that for a matrix A and its cofactors bijb_{ij}, k=1naikbjk=det(A)δij\sum_{k=1}^{n} a_{ik} b_{jk} = \det(A) \delta_{ij}, where δij\delta_{ij} is the Kronecker delta (δij=1\delta_{ij}=1 if i=ji=j and δij=0\delta_{ij}=0 if iji \neq j). So, dij=det(A)δijd_{ij} = \det(A) \delta_{ij}.

This means the matrix D is a diagonal matrix: D=(det(A)000det(A)000det(A))=det(A)ID = \begin{pmatrix} \det(A) & 0 & 0 \\ 0 & \det(A) & 0 \\ 0 & 0 & \det(A) \end{pmatrix} = \det(A) I, where I is the 3×33 \times 3 identity matrix.

The determinant of D is det(D)=det(det(A)I)\det(D) = \det(\det(A) I). For a scalar cc and an n×nn \times n matrix M, det(cM)=cndet(M)\det(cM) = c^n \det(M). Here, c=det(A)c = \det(A), M=IM = I, and n=3n=3. So, det(D)=(det(A))3det(I)=(det(A))3×1=(det(A))3\det(D) = (\det(A))^3 \det(I) = (\det(A))^3 \times 1 = (\det(A))^3.

The value we need to find is det(dij)3=det(D)3=(det(A))33\sqrt[3]{\det(d_{ij})} = \sqrt[3]{\det(D)} = \sqrt[3]{(\det(A))^3}. Since det(A)\det(A) is a real number for a real matrix A, (det(A))33=det(A)\sqrt[3]{(\det(A))^3} = \det(A).

Now, we need to calculate the determinant of matrix A. A=(012444290)A = \begin{pmatrix} 0 & 1 & -2 \\ 4 & 4 & 4 \\ 2 & 9 & 0 \end{pmatrix}

We can calculate det(A)\det(A) by expanding along the first row: det(A)=0det(4490)1det(4420)+(2)det(4429)\det(A) = 0 \cdot \det \begin{pmatrix} 4 & 4 \\ 9 & 0 \end{pmatrix} - 1 \cdot \det \begin{pmatrix} 4 & 4 \\ 2 & 0 \end{pmatrix} + (-2) \cdot \det \begin{pmatrix} 4 & 4 \\ 2 & 9 \end{pmatrix} det(A)=01(4×04×2)2(4×94×2)\det(A) = 0 - 1 \cdot (4 \times 0 - 4 \times 2) - 2 \cdot (4 \times 9 - 4 \times 2) det(A)=1(08)2(368)\det(A) = -1 \cdot (0 - 8) - 2 \cdot (36 - 8) det(A)=1(8)2(28)\det(A) = -1 \cdot (-8) - 2 \cdot (28) det(A)=856\det(A) = 8 - 56 det(A)=48\det(A) = -48.

Alternatively, we can factor out 4 from the second row of A: det(A)=4det(012111290)\det(A) = 4 \det \begin{pmatrix} 0 & 1 & -2 \\ 1 & 1 & 1 \\ 2 & 9 & 0 \end{pmatrix} Now, expand the new determinant along the first row: 0det(1190)1det(1120)+(2)det(1129)0 \cdot \det \begin{pmatrix} 1 & 1 \\ 9 & 0 \end{pmatrix} - 1 \cdot \det \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} + (-2) \cdot \det \begin{pmatrix} 1 & 1 \\ 2 & 9 \end{pmatrix} =01(1×01×2)2(1×91×2)= 0 - 1 \cdot (1 \times 0 - 1 \times 2) - 2 \cdot (1 \times 9 - 1 \times 2) =1(2)2(92)= -1 \cdot (-2) - 2 \cdot (9 - 2) =22(7)= 2 - 2 \cdot (7) =214=12= 2 - 14 = -12. So, det(A)=4×(12)=48\det(A) = 4 \times (-12) = -48.

The determinant of A is -48. The value we need to find is det(A)\det(A), which is -48.

Comparing with the given options: (A) 4 (B) 24 (C) -48 (D) -24

The value is -48, which matches option (C).

The final answer is 48\boxed{-48}.

Explanation of the solution:

  1. Construct the matrix A based on the given conditions for its elements aija_{ij}.
  2. Recognize that the elements dij=k=13aikbjkd_{ij} = \sum_{k=1}^{3} a_{ik}b_{jk} (where bjkb_{jk} is the cofactor of ajka_{jk}) form a matrix D which is equal to det(A)I\det(A) I, where I is the identity matrix. This is a property of determinants and cofactors: k=1naikbjk=det(A)δij\sum_{k=1}^{n} a_{ik} b_{jk} = \det(A) \delta_{ij}.
  3. Calculate the determinant of D. Since D=det(A)ID = \det(A) I, det(D)=(det(A))3\det(D) = (\det(A))^3.
  4. The required value is det(D)3=(det(A))33=det(A)\sqrt[3]{\det(D)} = \sqrt[3]{(\det(A))^3} = \det(A).
  5. Calculate the determinant of the matrix A.
  6. The calculated determinant of A is the final answer.

Matrix A: A=(012444290)A = \begin{pmatrix} 0 & 1 & -2 \\ 4 & 4 & 4 \\ 2 & 9 & 0 \end{pmatrix} det(A)=0(036)1(08)2(368)=0+82(28)=856=48\det(A) = 0(0-36) - 1(0-8) - 2(36-8) = 0 + 8 - 2(28) = 8 - 56 = -48. The value is det(A)=48\det(A) = -48.

The final answer is 48\boxed{-48}.