Solveeit Logo

Question

Mathematics Question on 3D Geometry

Consider a line LL passing through the points P(1,2,1)P(1, 2, 1) and Q(2,1,1)Q(2, 1, -1). If the mirror image of the point A(2,2,2)A(2, 2, 2) in the line LL is (α,β,γ)(\alpha, \beta, \gamma), then α+β+6γ\alpha + \beta + 6\gamma is equal to .

Answer

Step 1: Direction Ratios of Line LL:

The direction ratios of line LL passing through P(1,2,1)P(1,2,1) and Q(2,1,1)Q(2,1,-1) are: DR’s of L=(21,12,11)=1:1:2.\text{DR's of } L = (2 - 1, 1 - 2, -1 - 1) = 1 : -1 : -2.

Step 2: Direction Ratios of ABAB:

Let B(α,β,γ)B(\alpha, \beta, \gamma) be the mirror image of A(2,2,2)A(2,2,2) in line LL. Then, the direction ratios of ABAB are: (α2,β2,γ2).(\alpha - 2, \beta - 2, \gamma - 2).

Step 3: Perpendicular Condition:

Since ABAB is perpendicular to line LL, we have: 1(α2)1(β2)2(γ2)=0.1(\alpha - 2) - 1(\beta - 2) - 2(\gamma - 2) = 0. Simplifying, we get: \alpha - \beta - 2\gamma = -4. \tag{1}

Step 4: Finding the Midpoint CC of ABAB:

The midpoint CC of ABAB lies on the line LL, so: C=(α+22,β+22,γ+22).C = \left(\frac{\alpha + 2}{2}, \frac{\beta + 2}{2}, \frac{\gamma + 2}{2}\right).

Step 5: Direction Ratios of PCPC and Parallel Condition:

The direction ratios of PCPC are: (α22,β22,γ22).\left(\frac{\alpha - 2}{2}, \frac{\beta - 2}{2}, \frac{\gamma - 2}{2}\right). Since line LL is parallel to PCPC, we have: α22:β22:γ22=1:1:2.\frac{\alpha - 2}{2} : \frac{\beta - 2}{2} : \frac{\gamma - 2}{2} = 1 : -1 : -2. This gives: α2=2K,β2=2K,γ2=4K.\alpha - 2 = -2K, \quad \beta - 2 = 2K, \quad \gamma - 2 = 4K. Solving for α\alpha, β\beta, and γ\gamma, we get: α=2K+2,β=2K+2,γ=4K+2.\alpha = -2K + 2, \quad \beta = 2K + 2, \quad \gamma = 4K + 2.

Step 6: Substitute into Equation (1):

Substitute these values into equation (1): 2K+2(2K+2)2(4K+2)=4.-2K + 2 - (2K + 2) - 2(4K + 2) = -4. Solving for KK, we find: K=16.K = \frac{1}{6}.

Step 7: Calculating α+β+6γ\alpha + \beta + 6\gamma:

Substitute K=16K = \frac{1}{6} into the expressions for α\alpha, β\beta, and γ\gamma: α=2×16+2=106=53,\alpha = -2 \times \frac{1}{6} + 2 = \frac{10}{6} = \frac{5}{3}, β=2×16+2=146=73,\beta = 2 \times \frac{1}{6} + 2 = \frac{14}{6} = \frac{7}{3}, γ=4×16+2=166=83.\gamma = 4 \times \frac{1}{6} + 2 = \frac{16}{6} = \frac{8}{3}. Therefore, α+β+6γ=53+73+6×83=243=6.\alpha + \beta + 6\gamma = \frac{5}{3} + \frac{7}{3} + 6 \times \frac{8}{3} = \frac{24}{3} = 6.

Answer: 6