Solveeit Logo

Question

Question: Consider a function $f(x)=\int sin(ln \ x)dx$ such that $f(e)=\frac{e}{\sqrt{2}}sin(1-\frac{\pi}{4})...

Consider a function f(x)=sin(ln x)dxf(x)=\int sin(ln \ x)dx such that f(e)=e2sin(1π4)f(e)=\frac{e}{\sqrt{2}}sin(1-\frac{\pi}{4}). Then the value of f(1)f(1) is

A

12\frac{1}{2}

B

12-\frac{1}{2}

C

11

D

1-1

Answer

-\frac{1}{2}

Explanation

Solution

To find the value of f(1)f(1), we first need to evaluate the indefinite integral f(x)=sin(lnx)dxf(x)=\int \sin(\ln x)dx.

Step 1: Evaluate the indefinite integral f(x)=sin(lnx)dxf(x)=\int \sin(\ln x)dx.

Let I=sin(lnx)dxI = \int \sin(\ln x)dx. We can use the substitution method. Let t=lnxt = \ln x. Then x=etx = e^t, and differentiating both sides with respect to tt, we get dx=etdtdx = e^t dt. Substituting these into the integral: I=sin(t)etdtI = \int \sin(t) e^t dt.

This is a standard integral of the form eaxsin(bx)dx=eaxa2+b2(asin(bx)bcos(bx))\int e^{ax} \sin(bx) dx = \frac{e^{ax}}{a^2+b^2}(a \sin(bx) - b \cos(bx)). In our case, a=1a=1 and b=1b=1. So, I=et12+12(1sin(t)1cos(t))+CI = \frac{e^t}{1^2+1^2}(1 \cdot \sin(t) - 1 \cdot \cos(t)) + C' I=et2(sin(t)cos(t))+CI = \frac{e^t}{2}(\sin(t) - \cos(t)) + C'.

Now, substitute back t=lnxt = \ln x and et=xe^t = x: f(x)=x2(sin(lnx)cos(lnx))+Cf(x) = \frac{x}{2}(\sin(\ln x) - \cos(\ln x)) + C.

Step 2: Use the given condition f(e)=e2sin(1π4)f(e)=\frac{e}{\sqrt{2}}\sin(1-\frac{\pi}{4}) to find the constant CC.

Substitute x=ex=e into the expression for f(x)f(x): f(e)=e2(sin(lne)cos(lne))+Cf(e) = \frac{e}{2}(\sin(\ln e) - \cos(\ln e)) + C. Since lne=1\ln e = 1: f(e)=e2(sin(1)cos(1))+Cf(e) = \frac{e}{2}(\sin(1) - \cos(1)) + C.

Now, let's simplify the given value of f(e)f(e): f(e)=e2sin(1π4)f(e) = \frac{e}{\sqrt{2}}\sin(1-\frac{\pi}{4}). Using the trigonometric identity sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B: sin(1π4)=sin(1)cos(π4)cos(1)sin(π4)\sin(1-\frac{\pi}{4}) = \sin(1)\cos(\frac{\pi}{4}) - \cos(1)\sin(\frac{\pi}{4}). We know that cos(π4)=12\cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} and sin(π4)=12\sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}. So, sin(1π4)=sin(1)12cos(1)12=12(sin(1)cos(1))\sin(1-\frac{\pi}{4}) = \sin(1)\frac{1}{\sqrt{2}} - \cos(1)\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}(\sin(1) - \cos(1)).

Substitute this back into the expression for f(e)f(e): f(e)=e212(sin(1)cos(1))f(e) = \frac{e}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}(\sin(1) - \cos(1)) f(e)=e2(sin(1)cos(1))f(e) = \frac{e}{2}(\sin(1) - \cos(1)).

Now, equate the two expressions for f(e)f(e): e2(sin(1)cos(1))+C=e2(sin(1)cos(1))\frac{e}{2}(\sin(1) - \cos(1)) + C = \frac{e}{2}(\sin(1) - \cos(1)). From this equation, it is clear that C=0C=0.

So, the definite form of the function is: f(x)=x2(sin(lnx)cos(lnx))f(x) = \frac{x}{2}(\sin(\ln x) - \cos(\ln x)).

Step 3: Calculate the value of f(1)f(1).

Substitute x=1x=1 into the function f(x)f(x): f(1)=12(sin(ln1)cos(ln1))f(1) = \frac{1}{2}(\sin(\ln 1) - \cos(\ln 1)). We know that ln1=0\ln 1 = 0. So, f(1)=12(sin(0)cos(0))f(1) = \frac{1}{2}(\sin(0) - \cos(0)). We know that sin(0)=0\sin(0) = 0 and cos(0)=1\cos(0) = 1. f(1)=12(01)f(1) = \frac{1}{2}(0 - 1) f(1)=12f(1) = -\frac{1}{2}.

The final answer is 12-\frac{1}{2}.

Explanation of the solution:

  1. Integrate f(x)f(x): The integral sin(lnx)dx\int \sin(\ln x) dx is solved by substitution t=lnxt = \ln x, transforming it into etsintdt\int e^t \sin t dt. This is a standard integral form eaxsin(bx)dx=eaxa2+b2(asin(bx)bcos(bx))\int e^{ax} \sin(bx) dx = \frac{e^{ax}}{a^2+b^2}(a \sin(bx) - b \cos(bx)). Applying this formula with a=1,b=1a=1, b=1 and then substituting back t=lnxt=\ln x yields f(x)=x2(sin(lnx)cos(lnx))+Cf(x) = \frac{x}{2}(\sin(\ln x) - \cos(\ln x)) + C.

  2. Determine Constant CC: Use the given condition f(e)=e2sin(1π4)f(e)=\frac{e}{\sqrt{2}}\sin(1-\frac{\pi}{4}). Substitute x=ex=e into f(x)f(x) to get f(e)=e2(sin(1)cos(1))+Cf(e) = \frac{e}{2}(\sin(1) - \cos(1)) + C. Simplify the given f(e)f(e) using the trigonometric identity sin(AB)=sinAcosBcosAsinB\sin(A-B) = \sin A \cos B - \cos A \sin B, which gives e2sin(1π4)=e2(sin(1)cos(1))\frac{e}{\sqrt{2}}\sin(1-\frac{\pi}{4}) = \frac{e}{2}(\sin(1) - \cos(1)). Equating the two expressions for f(e)f(e) reveals C=0C=0.

  3. Calculate f(1)f(1): With C=0C=0, f(x)=x2(sin(lnx)cos(lnx))f(x) = \frac{x}{2}(\sin(\ln x) - \cos(\ln x)). Substitute x=1x=1 into this function. Since ln1=0\ln 1 = 0, f(1)=12(sin(0)cos(0))f(1) = \frac{1}{2}(\sin(0) - \cos(0)). Using sin(0)=0\sin(0)=0 and cos(0)=1\cos(0)=1, we get f(1)=12(01)=12f(1) = \frac{1}{2}(0 - 1) = -\frac{1}{2}.