Solveeit Logo

Question

Question: Consider a function $f(x) = \sin^{-1}\frac{2x}{1+x^2} + \cos^{-1}\frac{1-x^2}{1+x^2} + \tan^{-1}\fra...

Consider a function f(x)=sin12x1+x2+cos11x21+x2+tan12x1x2atan1x(aR)f(x) = \sin^{-1}\frac{2x}{1+x^2} + \cos^{-1}\frac{1-x^2}{1+x^2} + \tan^{-1}\frac{2x}{1-x^2} - a\tan^{-1}x (a \in R), the possible value of aa for which f(x)=0f'(x) = 0 over some interval of xx, is

A

6

B

-6

C

2

D

-2

Answer

6, 2, -2

Explanation

Solution

To find the value of aa for which f(x)=0f'(x) = 0 over some interval of xx, we need to simplify the function f(x)f(x) using standard inverse trigonometric identities. The identities depend on the range of xx. Let x=tanθx = \tan\theta, where θ(π/2,π/2)\theta \in (-\pi/2, \pi/2).

The terms in f(x)f(x) are:

  1. sin12x1+x2\sin^{-1}\frac{2x}{1+x^2}
  2. cos11x21+x2\cos^{-1}\frac{1-x^2}{1+x^2}
  3. tan12x1x2\tan^{-1}\frac{2x}{1-x^2}

Let's analyze each term for different intervals of xx:

Identity 1: sin1(2x1+x2)\sin^{-1}\left(\frac{2x}{1+x^2}\right) Substituting x=tanθx=\tan\theta, we get sin1(sin(2θ))\sin^{-1}(\sin(2\theta)).

  • If x1|x| \le 1 (i.e., π/4θπ/4-\pi/4 \le \theta \le \pi/4), then 2θ[π/2,π/2]2\theta \in [-\pi/2, \pi/2]. So, sin1(sin(2θ))=2θ=2tan1x\sin^{-1}(\sin(2\theta)) = 2\theta = 2\tan^{-1}x.
  • If x>1x > 1 (i.e., π/4<θ<π/2\pi/4 < \theta < \pi/2), then 2θ(π/2,π)2\theta \in (\pi/2, \pi). So, sin1(sin(2θ))=π2θ=π2tan1x\sin^{-1}(\sin(2\theta)) = \pi - 2\theta = \pi - 2\tan^{-1}x.
  • If x<1x < -1 (i.e., π/2<θ<π/4-\pi/2 < \theta < -\pi/4), then 2θ(π,π/2)2\theta \in (-\pi, -\pi/2). So, sin1(sin(2θ))=π2θ=π2tan1x\sin^{-1}(\sin(2\theta)) = -\pi - 2\theta = -\pi - 2\tan^{-1}x.

Identity 2: cos1(1x21+x2)\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) Substituting x=tanθx=\tan\theta, we get cos1(cos(2θ))\cos^{-1}(\cos(2\theta)).

  • If x0x \ge 0 (i.e., 0θ<π/20 \le \theta < \pi/2), then 2θ[0,π)2\theta \in [0, \pi). So, cos1(cos(2θ))=2θ=2tan1x\cos^{-1}(\cos(2\theta)) = 2\theta = 2\tan^{-1}x.
  • If x<0x < 0 (i.e., π/2<θ<0-\pi/2 < \theta < 0), then 2θ(π,0)2\theta \in (-\pi, 0). So, cos1(cos(2θ))=2θ=2tan1x\cos^{-1}(\cos(2\theta)) = -2\theta = -2\tan^{-1}x (since cos(y)=cosy\cos(-y) = \cos y and 2θ(0,π)-2\theta \in (0, \pi)).

Identity 3: tan1(2x1x2)\tan^{-1}\left(\frac{2x}{1-x^2}\right) Substituting x=tanθx=\tan\theta, we get tan1(tan(2θ))\tan^{-1}(\tan(2\theta)).

  • If x<1|x| < 1 (i.e., π/4<θ<π/4-\pi/4 < \theta < \pi/4), then 2θ(π/2,π/2)2\theta \in (-\pi/2, \pi/2). So, tan1(tan(2θ))=2θ=2tan1x\tan^{-1}(\tan(2\theta)) = 2\theta = 2\tan^{-1}x.
  • If x>1x > 1 (i.e., π/4<θ<π/2\pi/4 < \theta < \pi/2), then 2θ(π/2,π)2\theta \in (\pi/2, \pi). So, tan1(tan(2θ))=2θπ=2tan1xπ\tan^{-1}(\tan(2\theta)) = 2\theta - \pi = 2\tan^{-1}x - \pi.
  • If x<1x < -1 (i.e., π/2<θ<π/4-\pi/2 < \theta < -\pi/4), then 2θ(π,π/2)2\theta \in (-\pi, -\pi/2). So, tan1(tan(2θ))=2θ+π=2tan1x+π\tan^{-1}(\tan(2\theta)) = 2\theta + \pi = 2\tan^{-1}x + \pi.

Now, let's substitute these simplified forms into f(x)f(x) for different intervals:

Case 1: For x(0,1)x \in (0, 1)

  • sin12x1+x2=2tan1x\sin^{-1}\frac{2x}{1+x^2} = 2\tan^{-1}x
  • cos11x21+x2=2tan1x\cos^{-1}\frac{1-x^2}{1+x^2} = 2\tan^{-1}x
  • tan12x1x2=2tan1x\tan^{-1}\frac{2x}{1-x^2} = 2\tan^{-1}x

f(x)=2tan1x+2tan1x+2tan1xatan1x=(6a)tan1xf(x) = 2\tan^{-1}x + 2\tan^{-1}x + 2\tan^{-1}x - a\tan^{-1}x = (6-a)\tan^{-1}x. For f(x)=0f'(x) = 0 over this interval, the coefficient of tan1x\tan^{-1}x must be zero, i.e., 6a=0    a=66-a = 0 \implies a=6.

Case 2: For x(1,0)x \in (-1, 0)

  • sin12x1+x2=2tan1x\sin^{-1}\frac{2x}{1+x^2} = 2\tan^{-1}x
  • cos11x21+x2=2tan1x\cos^{-1}\frac{1-x^2}{1+x^2} = -2\tan^{-1}x
  • tan12x1x2=2tan1x\tan^{-1}\frac{2x}{1-x^2} = 2\tan^{-1}x

f(x)=2tan1x2tan1x+2tan1xatan1x=(2a)tan1xf(x) = 2\tan^{-1}x - 2\tan^{-1}x + 2\tan^{-1}x - a\tan^{-1}x = (2-a)\tan^{-1}x. For f(x)=0f'(x) = 0 over this interval, 2a=0    a=22-a = 0 \implies a=2.

Case 3: For x>1x > 1

  • sin12x1+x2=π2tan1x\sin^{-1}\frac{2x}{1+x^2} = \pi - 2\tan^{-1}x
  • cos11x21+x2=2tan1x\cos^{-1}\frac{1-x^2}{1+x^2} = 2\tan^{-1}x
  • tan12x1x2=2tan1xπ\tan^{-1}\frac{2x}{1-x^2} = 2\tan^{-1}x - \pi

f(x)=(π2tan1x)+(2tan1x)+(2tan1xπ)atan1xf(x) = (\pi - 2\tan^{-1}x) + (2\tan^{-1}x) + (2\tan^{-1}x - \pi) - a\tan^{-1}x f(x)=π2tan1x+2tan1x+2tan1xπatan1x=(2a)tan1xf(x) = \pi - 2\tan^{-1}x + 2\tan^{-1}x + 2\tan^{-1}x - \pi - a\tan^{-1}x = (2-a)\tan^{-1}x. For f(x)=0f'(x) = 0 over this interval, 2a=0    a=22-a = 0 \implies a=2.

Case 4: For x<1x < -1

  • sin12x1+x2=π2tan1x\sin^{-1}\frac{2x}{1+x^2} = -\pi - 2\tan^{-1}x
  • cos11x21+x2=2tan1x\cos^{-1}\frac{1-x^2}{1+x^2} = -2\tan^{-1}x
  • tan12x1x2=2tan1x+π\tan^{-1}\frac{2x}{1-x^2} = 2\tan^{-1}x + \pi

f(x)=(π2tan1x)+(2tan1x)+(2tan1x+π)atan1xf(x) = (-\pi - 2\tan^{-1}x) + (-2\tan^{-1}x) + (2\tan^{-1}x + \pi) - a\tan^{-1}x f(x)=π2tan1x2tan1x+2tan1x+πatan1x=(2a)tan1xf(x) = -\pi - 2\tan^{-1}x - 2\tan^{-1}x + 2\tan^{-1}x + \pi - a\tan^{-1}x = (-2-a)\tan^{-1}x. For f(x)=0f'(x) = 0 over this interval, 2a=0    a=2-2-a = 0 \implies a=-2.

The possible values of aa for which f(x)=0f'(x)=0 over some interval are 6,2,26, 2, -2.