Question
Question: Consider a function $f(x) = \sin^{-1}\frac{2x}{1+x^2} + \cos^{-1}\frac{1-x^2}{1+x^2} + \tan^{-1}\fra...
Consider a function f(x)=sin−11+x22x+cos−11+x21−x2+tan−11−x22x−atan−1x(a∈R), the possible value of a for which f′(x)=0 over some interval of x, is

6
-6
2
-2
6, 2, -2
Solution
To find the value of a for which f′(x)=0 over some interval of x, we need to simplify the function f(x) using standard inverse trigonometric identities. The identities depend on the range of x. Let x=tanθ, where θ∈(−π/2,π/2).
The terms in f(x) are:
- sin−11+x22x
- cos−11+x21−x2
- tan−11−x22x
Let's analyze each term for different intervals of x:
Identity 1: sin−1(1+x22x) Substituting x=tanθ, we get sin−1(sin(2θ)).
- If ∣x∣≤1 (i.e., −π/4≤θ≤π/4), then 2θ∈[−π/2,π/2]. So, sin−1(sin(2θ))=2θ=2tan−1x.
- If x>1 (i.e., π/4<θ<π/2), then 2θ∈(π/2,π). So, sin−1(sin(2θ))=π−2θ=π−2tan−1x.
- If x<−1 (i.e., −π/2<θ<−π/4), then 2θ∈(−π,−π/2). So, sin−1(sin(2θ))=−π−2θ=−π−2tan−1x.
Identity 2: cos−1(1+x21−x2) Substituting x=tanθ, we get cos−1(cos(2θ)).
- If x≥0 (i.e., 0≤θ<π/2), then 2θ∈[0,π). So, cos−1(cos(2θ))=2θ=2tan−1x.
- If x<0 (i.e., −π/2<θ<0), then 2θ∈(−π,0). So, cos−1(cos(2θ))=−2θ=−2tan−1x (since cos(−y)=cosy and −2θ∈(0,π)).
Identity 3: tan−1(1−x22x) Substituting x=tanθ, we get tan−1(tan(2θ)).
- If ∣x∣<1 (i.e., −π/4<θ<π/4), then 2θ∈(−π/2,π/2). So, tan−1(tan(2θ))=2θ=2tan−1x.
- If x>1 (i.e., π/4<θ<π/2), then 2θ∈(π/2,π). So, tan−1(tan(2θ))=2θ−π=2tan−1x−π.
- If x<−1 (i.e., −π/2<θ<−π/4), then 2θ∈(−π,−π/2). So, tan−1(tan(2θ))=2θ+π=2tan−1x+π.
Now, let's substitute these simplified forms into f(x) for different intervals:
Case 1: For x∈(0,1)
- sin−11+x22x=2tan−1x
- cos−11+x21−x2=2tan−1x
- tan−11−x22x=2tan−1x
f(x)=2tan−1x+2tan−1x+2tan−1x−atan−1x=(6−a)tan−1x. For f′(x)=0 over this interval, the coefficient of tan−1x must be zero, i.e., 6−a=0⟹a=6.
Case 2: For x∈(−1,0)
- sin−11+x22x=2tan−1x
- cos−11+x21−x2=−2tan−1x
- tan−11−x22x=2tan−1x
f(x)=2tan−1x−2tan−1x+2tan−1x−atan−1x=(2−a)tan−1x. For f′(x)=0 over this interval, 2−a=0⟹a=2.
Case 3: For x>1
- sin−11+x22x=π−2tan−1x
- cos−11+x21−x2=2tan−1x
- tan−11−x22x=2tan−1x−π
f(x)=(π−2tan−1x)+(2tan−1x)+(2tan−1x−π)−atan−1x f(x)=π−2tan−1x+2tan−1x+2tan−1x−π−atan−1x=(2−a)tan−1x. For f′(x)=0 over this interval, 2−a=0⟹a=2.
Case 4: For x<−1
- sin−11+x22x=−π−2tan−1x
- cos−11+x21−x2=−2tan−1x
- tan−11−x22x=2tan−1x+π
f(x)=(−π−2tan−1x)+(−2tan−1x)+(2tan−1x+π)−atan−1x f(x)=−π−2tan−1x−2tan−1x+2tan−1x+π−atan−1x=(−2−a)tan−1x. For f′(x)=0 over this interval, −2−a=0⟹a=−2.
The possible values of a for which f′(x)=0 over some interval are 6,2,−2.