Solveeit Logo

Question

Question: Consider a function $f(x) = \prod_{r=1}^{\infty} \left( \frac{\sin \left( \frac{x}{3^{r-1}} \right)}...

Consider a function f(x)=r=1(sin(x3r1)3sin(x3r))f(x) = \prod_{r=1}^{\infty} \left( \frac{\sin \left( \frac{x}{3^{r-1}} \right)}{3 \sin \left( \frac{x}{3^r} \right)} \right). Then, the number of points where xf(x)|x f(x)| is non-differentiable on interval (0,3π)(0, 3\pi) is _____.

Answer

2

Explanation

Solution

The infinite product simplifies to f(x)=sin(x)xf(x) = \frac{\sin(x)}{x} for x0x \neq 0. Thus, xf(x)=xsin(x)x=sin(x)|x f(x)| = |x \cdot \frac{\sin(x)}{x}| = |\sin(x)| for x(0,3π)x \in (0, 3\pi). The function sin(x)|\sin(x)| is non-differentiable when sin(x)=0\sin(x) = 0. In the interval (0,3π)(0, 3\pi), sin(x)=0\sin(x) = 0 at x=πx = \pi and x=2πx = 2\pi. There are 2 such points.