Solveeit Logo

Question

Question: Consider a function $f(x)= \int \frac{(2x^2-1)}{(1-x^2+x^4)^{\frac{1}{4}}} dx, x>0$, $f(1)= \frac{2}...

Consider a function f(x)=(2x21)(1x2+x4)14dx,x>0f(x)= \int \frac{(2x^2-1)}{(1-x^2+x^4)^{\frac{1}{4}}} dx, x>0, f(1)=23f(1)= \frac{2}{3}. If f(12)=23kkf(\frac{1}{\sqrt{2}})= \frac{2}{3}k^k, then the value of kk is

Answer

Not provided

Explanation

Solution

The provided solution attempts to solve the integral but does not arrive at a final answer. Therefore, an explanation and correct answer cannot be derived from the given information.