Solveeit Logo

Question

Question: Consider a differential equation $f'(\tan x)=\frac{\tan x}{f(\tan x)} + \frac{f(\tan x)}{\tan x}, f(...

Consider a differential equation f(tanx)=tanxf(tanx)+f(tanx)tanx,f(1)=3f'(\tan x)=\frac{\tan x}{f(\tan x)} + \frac{f(\tan x)}{\tan x}, f(1)=\sqrt{3}

Then the value of (f(3))23ln3(f(\sqrt{3}))^2 - 3\ln 3 is

Answer

9

Explanation

Solution

Let t=tanxt = \tan x. The given differential equation is f(t)=tf(t)+f(t)tf'(t) = \frac{t}{f(t)} + \frac{f(t)}{t}. We can rewrite this as dfdt=tf(t)+f(t)t\frac{df}{dt} = \frac{t}{f(t)} + \frac{f(t)}{t}.

Using the substitution f(t)=tg(t)f(t) = t g(t), we have f(t)=g(t)+tg(t)f'(t) = g(t) + t g'(t). Substituting into the differential equation: g(t)+tg(t)=ttg(t)+tg(t)tg(t) + t g'(t) = \frac{t}{t g(t)} + \frac{t g(t)}{t} g(t)+tg(t)=1g(t)+g(t)g(t) + t g'(t) = \frac{1}{g(t)} + g(t) tg(t)=1g(t)t g'(t) = \frac{1}{g(t)}

This is a separable differential equation: g(t)dgdt=1tg(t) \frac{dg}{dt} = \frac{1}{t} gdg=1tdtg \, dg = \frac{1}{t} \, dt

Integrating both sides: gdg=1tdt\int g \, dg = \int \frac{1}{t} \, dt g(t)22=lnt+C\frac{g(t)^2}{2} = \ln|t| + C g(t)2=2lnt+Kg(t)^2 = 2 \ln|t| + K, where K=2CK = 2C.

Substituting back g(t)=f(t)tg(t) = \frac{f(t)}{t}: (f(t)t)2=2lnt+K\left(\frac{f(t)}{t}\right)^2 = 2 \ln|t| + K f(t)2t2=2lnt+K\frac{f(t)^2}{t^2} = 2 \ln|t| + K f(t)2=t2(2lnt+K)f(t)^2 = t^2 (2 \ln|t| + K)

Using the initial condition f(1)=3f(1) = \sqrt{3}: f(1)2=(1)2(2ln1+K)f(1)^2 = (1)^2 (2 \ln|1| + K) (3)2=1(20+K)(\sqrt{3})^2 = 1 (2 \cdot 0 + K) 3=K3 = K

So, the equation for f(t)2f(t)^2 becomes: f(t)2=t2(2lnt+3)f(t)^2 = t^2 (2 \ln|t| + 3)

To find (f(3))2(f(\sqrt{3}))^2, substitute t=3t = \sqrt{3}: (f(3))2=(3)2(2ln3+3)(f(\sqrt{3}))^2 = (\sqrt{3})^2 (2 \ln|\sqrt{3}| + 3) (f(3))2=3(2ln(3)+3)(f(\sqrt{3}))^2 = 3 (2 \ln(\sqrt{3}) + 3) (f(3))2=3(212ln3+3)(f(\sqrt{3}))^2 = 3 (2 \cdot \frac{1}{2} \ln 3 + 3) (f(3))2=3(ln3+3)(f(\sqrt{3}))^2 = 3 (\ln 3 + 3) (f(3))2=3ln3+9(f(\sqrt{3}))^2 = 3 \ln 3 + 9

Finally, calculate the required expression: (f(3))23ln3=(3ln3+9)3ln3=9(f(\sqrt{3}))^2 - 3\ln 3 = (3 \ln 3 + 9) - 3\ln 3 = 9.