Question
Question: Consider a differential equation $f'(\tan x)=\frac{\tan x}{f(\tan x)} + \frac{f(\tan x)}{\tan x}, f(...
Consider a differential equation f′(tanx)=f(tanx)tanx+tanxf(tanx),f(1)=3
Then the value of (f(3))2−3ln3 is

9
Solution
Let t=tanx. The given differential equation is f′(t)=f(t)t+tf(t). We can rewrite this as dtdf=f(t)t+tf(t).
Using the substitution f(t)=tg(t), we have f′(t)=g(t)+tg′(t). Substituting into the differential equation: g(t)+tg′(t)=tg(t)t+ttg(t) g(t)+tg′(t)=g(t)1+g(t) tg′(t)=g(t)1
This is a separable differential equation: g(t)dtdg=t1 gdg=t1dt
Integrating both sides: ∫gdg=∫t1dt 2g(t)2=ln∣t∣+C g(t)2=2ln∣t∣+K, where K=2C.
Substituting back g(t)=tf(t): (tf(t))2=2ln∣t∣+K t2f(t)2=2ln∣t∣+K f(t)2=t2(2ln∣t∣+K)
Using the initial condition f(1)=3: f(1)2=(1)2(2ln∣1∣+K) (3)2=1(2⋅0+K) 3=K
So, the equation for f(t)2 becomes: f(t)2=t2(2ln∣t∣+3)
To find (f(3))2, substitute t=3: (f(3))2=(3)2(2ln∣3∣+3) (f(3))2=3(2ln(3)+3) (f(3))2=3(2⋅21ln3+3) (f(3))2=3(ln3+3) (f(3))2=3ln3+9
Finally, calculate the required expression: (f(3))2−3ln3=(3ln3+9)−3ln3=9.