Solveeit Logo

Question

Physics Question on Current electricity

Consider a cylindrical conductor of Length L and area of cross section A. The specific conductivity varies as σ(x)=σ0Lx\sigma (x) = \sigma_0 \frac{L}{\sqrt{x}} where x is the distance along the axis of the cylinder from one of its ends. The resistance of the system along the cylindrical axis is

A

2L3Aσ0\frac{2 \sqrt{L}}{3 A \sigma_0}

B

3L2Aσ0\frac{3 \sqrt{L}}{2 A \sigma_0}

C

L3Aσ0\frac{ \sqrt{L}}{3 A \sigma_0}

D

2LAσ0\frac{2 \sqrt{L}}{ A \sigma_0}

Answer

2L3Aσ0\frac{2 \sqrt{L}}{3 A \sigma_0}

Explanation

Solution

The correct option is(A): 2L3Aσ0\frac{2 \sqrt{L}}{3 A \sigma_0}

Given, σ(x)=σ0lx\sigma(x)=\sigma_{0} \frac{l}{\sqrt{x}}
\because Resistance of the system along the cylindrical axis,
R =\int_\limits{0}^{L} \frac{\rho(x)}{A} d x
=\int_\limits{0}^{L} \frac{\left(\frac{1}{\sigma_{0} \frac{L}{\sqrt{x}}}\right)}{A} d x
[ρ(x)=1σ(x)]\left[\because \rho(x)=\frac{1}{\sigma(x)}\right]
=\int_\limits{0}^{L} \frac{\sqrt{x}}{\sigma_{0} A L} d x=\frac{1}{\sigma_{0} A L}\left(\frac{x^{3 / 2}}{3 / 2}\right)_{0}^{L}=\frac{2}{3} \frac{1}{\sigma_{0} A L}\left(L^{3 / 2}-O\right)
=231σ0AL×L3/2,R=23LAσ0=\frac{2}{3} \cdot \frac{1}{\sigma_{0} A L} \times L^{3 / 2}, R=\frac{2}{3} \cdot \frac{\sqrt{L}}{A \sigma_{0}}