Solveeit Logo

Question

Question: Consider a curve y = f(x) in xy plane. The curve passes through origin and has the property that a s...

Consider a curve y = f(x) in xy plane. The curve passes through origin and has the property that a segment of tangent drawn at any point P(x, f(x)) and the line y = 3 gets bisected by the line x + y = 1, then the equation of the curve is (yp)2=q(rxy)(y-p)^2 = q(r-x-y), where p, q, r are integers. Then p2+q2rp^2 + q - 2r equals

A

8

B

16

C

32

D

24

Answer

16

Explanation

Solution

Let the equation of the curve be y=f(x)y = f(x). The curve passes through the origin, so f(0)=0f(0) = 0. Let P(x,y)P(x, y) be a point on the curve. The equation of the tangent at P(x,y)P(x, y) is Yy=dydx(Xx)Y - y = \frac{dy}{dx}(X - x). Let m=dydxm = \frac{dy}{dx}. The tangent is Yy=m(Xx)Y - y = m(X - x). The tangent intersects the line y=3y=3 at point QQ. Let the coordinates of QQ be (XQ,3)(X_Q, 3). Substituting Y=3Y=3 in the tangent equation: 3y=m(XQx)3 - y = m(X_Q - x). XQx=3ym    XQ=x+3ymX_Q - x = \frac{3 - y}{m} \implies X_Q = x + \frac{3 - y}{m}. So, Q=(x+3ym,3)Q = \left( x + \frac{3 - y}{m}, 3 \right).

The segment of the tangent drawn at P(x,y)P(x, y) and the line y=3y=3 is the segment PQ, where P(x,y)P(x, y) and Q(x+3ym,3)Q\left( x + \frac{3 - y}{m}, 3 \right). The midpoint of the segment PQ is M=(x+(x+3ym)2,y+32)=(2x+3ym2,y+32)=(x+3y2m,y+32)M = \left( \frac{x + \left( x + \frac{3 - y}{m} \right)}{2}, \frac{y + 3}{2} \right) = \left( \frac{2x + \frac{3 - y}{m}}{2}, \frac{y + 3}{2} \right) = \left( x + \frac{3 - y}{2m}, \frac{y + 3}{2} \right).

The problem states that this midpoint M is bisected by the line x+y=1x + y = 1. This means M lies on the line x+y=1x + y = 1. Substituting the coordinates of M into the equation x+y=1x + y = 1: (x+3y2m)+(y+32)=1\left( x + \frac{3 - y}{2m} \right) + \left( \frac{y + 3}{2} \right) = 1. Replace mm with dydx\frac{dy}{dx}: x+3y2dydx+y+32=1x + \frac{3 - y}{2 \frac{dy}{dx}} + \frac{y + 3}{2} = 1. Multiply the entire equation by 2dydx2 \frac{dy}{dx}: 2xdydx+(3y)+(y+3)dydx=2dydx2x \frac{dy}{dx} + (3 - y) + (y + 3) \frac{dy}{dx} = 2 \frac{dy}{dx}. Rearrange the terms to form a differential equation: (2x+y+32)dydx=y3(2x + y + 3 - 2) \frac{dy}{dx} = y - 3. (2x+y+1)dydx=y3(2x + y + 1) \frac{dy}{dx} = y - 3. dydx=y32x+y+1\frac{dy}{dx} = \frac{y - 3}{2x + y + 1}.

This is a first-order differential equation. To solve it, we can use a substitution to make it homogeneous. Let y3=vy - 3 = v and x=X2x = X - 2. Then dy=dvdy = dv and dx=dXdx = dX. dvdX=v2(X2)+(v+3)+1=v2X4+v+4=v2X+v\frac{dv}{dX} = \frac{v}{2(X - 2) + (v + 3) + 1} = \frac{v}{2X - 4 + v + 4} = \frac{v}{2X + v}. This is a homogeneous equation in vv and XX. Let v=uXv = uX. Then dvdX=u+XdudX\frac{dv}{dX} = u + X \frac{du}{dX}. u+XdudX=uX2X+uX=u2+uu + X \frac{du}{dX} = \frac{uX}{2X + uX} = \frac{u}{2 + u}. XdudX=u2+uu=uu(2+u)2+u=u2uu22+u=uu22+u=u(1+u)2+uX \frac{du}{dX} = \frac{u}{2 + u} - u = \frac{u - u(2 + u)}{2 + u} = \frac{u - 2u - u^2}{2 + u} = \frac{-u - u^2}{2 + u} = - \frac{u(1 + u)}{2 + u}. Separating variables: 2+uu(1+u)du=dXX\frac{2 + u}{u(1 + u)} du = - \frac{dX}{X}. Using partial fraction decomposition for the left side: 2+uu(1+u)=Au+B1+u\frac{2 + u}{u(1 + u)} = \frac{A}{u} + \frac{B}{1 + u}. 2+u=A(1+u)+Bu2 + u = A(1 + u) + Bu. Setting u=0u=0, we get 2=A(1)    A=22 = A(1) \implies A = 2. Setting u=1u=-1, we get 21=B(1)    1=B    B=12 - 1 = B(-1) \implies 1 = -B \implies B = -1. So, the equation is (2u11+u)du=dXX\left( \frac{2}{u} - \frac{1}{1 + u} \right) du = - \frac{dX}{X}. Integrating both sides: (2u11+u)du=dXX\int \left( \frac{2}{u} - \frac{1}{1 + u} \right) du = \int - \frac{dX}{X}. 2lnuln1+u=lnX+C12 \ln|u| - \ln|1 + u| = - \ln|X| + C_1. lnu21+u=lnX+C1\ln\left|\frac{u^2}{1 + u}\right| = - \ln|X| + C_1. lnu21+u+lnX=C1\ln\left|\frac{u^2}{1 + u}\right| + \ln|X| = C_1. lnu2X1+u=C1\ln\left|\frac{u^2 X}{1 + u}\right| = C_1. u2X1+u=eC1=K\frac{u^2 X}{1 + u} = e^{C_1} = K, where KK is a non-zero constant. (We need to consider the case K=0K=0 later).

Substitute back u=vXu = \frac{v}{X}: (vX)2X1+vX=K\frac{\left(\frac{v}{X}\right)^2 X}{1 + \frac{v}{X}} = K. v2XX+vX=K\frac{\frac{v^2}{X}}{\frac{X + v}{X}} = K. v2X+v=K\frac{v^2}{X + v} = K. v2=K(X+v)v^2 = K(X + v).

Substitute back v=y3v = y - 3 and X=x+2X = x + 2: (y3)2=K((x+2)+(y3))(y - 3)^2 = K((x + 2) + (y - 3)). (y3)2=K(x+2+y3)(y - 3)^2 = K(x + 2 + y - 3). (y3)2=K(x+y1)(y - 3)^2 = K(x + y - 1).

The curve passes through the origin (0, 0). Substitute x=0,y=0x=0, y=0 into the equation: (03)2=K(0+01)(0 - 3)^2 = K(0 + 0 - 1). (3)2=K(1)(-3)^2 = K(-1). 9=K    K=99 = -K \implies K = -9.

Thus, the equation of the curve is (y3)2=9(x+y1)(y - 3)^2 = -9(x + y - 1). We are given the form (yp)2=q(rxy)(y-p)^2 = q(r-x-y). (y3)2=9(x+y1)(y - 3)^2 = -9(x + y - 1). (y3)2=9((x+y1))(y - 3)^2 = 9(-(x + y - 1)). (y3)2=9(1xy)(y - 3)^2 = 9(1 - x - y). Comparing this with (yp)2=q(rxy)(y-p)^2 = q(r-x-y), we have: p=3p = 3. q=9q = 9. r=1r = 1. These are integers as stated in the question.

We need to calculate p2+q2rp^2 + q - 2r. p2+q2r=(3)2+92(1)p^2 + q - 2r = (3)^2 + 9 - 2(1). p2+q2r=9+92p^2 + q - 2r = 9 + 9 - 2. p2+q2r=182p^2 + q - 2r = 18 - 2. p2+q2r=16p^2 + q - 2r = 16.

We should also consider the case where K=0K=0. This would mean v2=0v^2 = 0, which implies v=0v = 0. y3=0    y=3y - 3 = 0 \implies y = 3. The curve y=3y=3 is a horizontal line. The tangent at any point (x,3)(x, 3) on this line is the line itself, y=3y=3. The segment of the tangent drawn at (x,3)(x, 3) and the line y=3y=3 is just the point (x,3)(x, 3). The midpoint of this segment (which is just the point itself) is (x,3)(x, 3). This midpoint must lie on the line x+y=1x+y=1. So, x+3=1x + 3 = 1, which means x=2x = -2. This implies that the line y=3y=3 satisfies the condition only at the point (2,3)(-2, 3). However, the condition must hold for any point P(x,f(x))P(x, f(x)) on the curve. So y=3y=3 is not the required curve. Also, the curve passes through the origin (0,0), which is not on the line y=3y=3. So K=0K=0 is not possible.

The value of p2+q2rp^2 + q - 2r is 16.