Solveeit Logo

Question

Mathematics Question on Surface Areas and Volumes

Consider a cuboid of sides 2 x , 4 x and 5 x and a closed hemisphere of radius r. If the sum of their surface areas is a constant k , then the ratio x : r , for which the sum of their volumes is maximum, is

A

2 : 5

B

19 : 45

C

3 : 8

D

19 : 15

Answer

19 : 45

Explanation

Solution

The correct answer is (B) : 19 : 45
∵ s1 + s2 = k
76x² + 3πr² = k
∴ 152x dxdr\frac{dx}{dr }+ 6πr = 0
dxdr\frac{dx}{dr }_ _ = 6πr152x\frac{-6πr}{152x}
Now
V = 40x340x^3+ 23\frac{2}{3}πr³
dxdr\frac{dx}{dr } = 120x² . dxdr\frac{dx}{dr } + 2πr² = 0
⇒ 120x² . ( 6π152\frac{-6π}{152} rx\frac{r}{x} ) + 2πr² = 0
⇒ 120 (xr)(\frac{x}{r}) = 2π (1526π)(\frac{152}{6π})
(xr)(\frac{x}{r}) = 1523\frac{152}{3} 1120\frac{1}{120} = 1945\frac{19}{45}