Solveeit Logo

Question

Physics Question on thermal properties of matter

Consider a compound slab consisting of two different materials having equal thickness and thermal conductivities KK and 2K2K respectively. The equivalent thermal conductivity of the slab is

A

3K3K

B

43K\frac{4}{3}K

C

23K\frac{2}{3}K

D

2K\sqrt{2}K

Answer

43K\frac{4}{3}K

Explanation

Solution

The quantity of heat following through a slab in time t,
Q=KAΔθlQ=\frac{K A \Delta \theta}{l}
For same heat flow through each slab and composite slab, we have
K1A(Δθ1)l=K2A(Δθ2)l\frac{K_{1} A\left(\Delta \theta_{1}\right)}{l}=\frac{K_{2} A\left(\Delta \theta_{2}\right)}{l}
=KA(Δθ1+Δθ2)2l=\frac{K' A\left(\Delta \theta_{1}+\Delta \theta_{2}\right)}{2 l}
or K1Δθ1=K2Δθ2K_{1} \Delta \theta_{1}=K_{2} \Delta \theta_{2}
=K2(Δθ1+Δθ2)=C=\frac{K'}{2}\left(\Delta \theta_{1}+\Delta \theta-2\right)=C (say)
So, Δθ1=CK1,Δθ2=CK2\Delta \theta_{1}=\frac{C}{K_{1}}, \Delta \theta_{2}=\frac{C}{K_{2}}
and (Δθ1+Δθ2)=2CK\left(\Delta \theta_{1}+\Delta \theta_{2}\right)=\frac{2 C}{K^{\prime}}
or CK1+CK2=2CK\frac{C}{K_{1}}+\frac{C}{K_{2}}=\frac{2 C}{K'}
or C(K1+K2K1K2)=2CKC\left(\frac{K_{1}+K_{2}}{K_{1} K_{2}}\right)=\frac{2 C}{K'}
K=2K1K2K1+K2\therefore K'=\frac{2 K_{1} K_{2}}{K_{1}+K_{2}}
Given K1=K,K2=2KK_{1}=K, K_{2}=2 K
So, K=2K×2KK+2K=43K'=\frac{2 K \times 2 K}{K+2 K}=\frac{4}{3}