Solveeit Logo

Question

Mathematics Question on Coordinate Geometry

Consider a circle (xα)2+(yβ)2=50(x - \alpha)^2 + (y - \beta)^2 = 50, where α,β>0\alpha, \beta> 0. If the circle touches the line y+x=0y + x = 0 at the point PP, whose distance from the origin is 424\sqrt{2}, then (α+β)2(\alpha + \beta)^2 is equal to ....

Answer

The given circle is:
(xα)2+(yβ)2=50.(x - \alpha)^2 + (y - \beta)^2 = 50.

The center of the circle is C(α,β)C(\alpha, \beta), and the radius of the circle is:
r=50=52.r = \sqrt{50} = 5\sqrt{2}.

The circle touches the line y+x=0y + x = 0 at point PP. The perpendicular distance from the center C(α,β)C(\alpha, \beta) to the line y+x=0y + x = 0 is equal to the radius of the circle:
Distance from C(α,β) to the line y+x=0=r.\text{Distance from } C(\alpha, \beta) \text{ to the line } y + x = 0 = r.

Using the formula for the perpendicular distance from a point to a line:
Distance=α+β12+12=α+β2.\text{Distance} = \frac{|\alpha + \beta|}{\sqrt{1^2 + 1^2}} = \frac{|\alpha + \beta|}{\sqrt{2}}.

Equating this to the radius:
α+β2=52.\frac{|\alpha + \beta|}{\sqrt{2}} = 5\sqrt{2}.

Simplify to find α+β|\alpha + \beta|:
α+β=522=10.|\alpha + \beta| = 5\sqrt{2} \cdot \sqrt{2} = 10.

Since α,β>0\alpha, \beta > 0, we have:
α+β=10.\alpha + \beta = 10.

The square of α+β\alpha + \beta is:
(α+β)2=102=100.(\alpha + \beta)^2 = 10^2 = 100.

The Correct answer is; 100