Solveeit Logo

Question

Mathematics Question on Conic sections

Consider a branch of the hyperbola x22y222x42y6=0x^2 - 2y^2 - 2\sqrt2x - 4\sqrt2y - 6 = 0 with vertex at the point A. Let B be one of the end points of its latusrectum. If C is the focus of the hyperbola nearest to the point A, then the area of the ΔABC\Delta ABC is

A

(a)1231 - \sqrt\frac{2}{3} sq unit

B

(b)321\sqrt\frac{3}{2} - 1 sq unit

C

(c)1+231 +\sqrt\frac{2}{3} sq unit

D

(d)32+1\sqrt\frac{3}{2} + 1sq unit

Answer

(b)321\sqrt\frac{3}{2} - 1 sq unit

Explanation

Solution

Given equation can be rewritten as focal chord
(x2)24(y+2)22=1\frac{(x-\sqrt2)^2}{4} - \frac{(y+\sqrt2)^2}{2}=1
For point A(x, y), e=1+24=32=\sqrt {1+\frac{2}{4}}=\sqrt\frac{3}{2}
x2=2x=2+2\Rightarrow x-\sqrt2=2\Rightarrow x=2+\sqrt2
x2=ae=6x=6+2x-\sqrt2=ae=\sqrt6 \Rightarrow x=\sqrt6+\sqrt2
Now, AC=6+222=62=\sqrt6+\sqrt2-2-\sqrt2=\sqrt6-2
and BC=b2a=22=1=\frac{b^2}{a}=\frac{2}{2}=1
AreaofΔABC=12×(62)×1=321squnit\therefore Area of \Delta ABC=\frac{1}{2}\times(\sqrt 6-2)\times1=\sqrt\frac{3}{2}-1 sq unit