Solveeit Logo

Question

Question: Consider a body of mass 1.0kg at rest at the origin at time t=0. A force \(\overrightarrow F = \alph...

Consider a body of mass 1.0kg at rest at the origin at time t=0. A force F=αti^+βj^\overrightarrow F = \alpha t\widehat i + \beta \widehat j is applied on the body, where α=1.0N/s and β=1.0N. The torque acting on the body about the origin at time t=1.0s is τ. Which of the following statements is (are) true?
A. τ=13N.m\left| {\vec \tau } \right| = \dfrac{1}{3}N.m
B. The torque τ\vec \tau is in the direction of unit vector +k^ + \widehat k
C. Velocity of the body at t= 1sec is v=12(i^+2j^)\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)m/s
D. The magnitude of displacement of the body at t= 1s is 16m\dfrac{1}{6}m

Explanation

Solution

From the vector form of 2nd law of Newton,F=ma=mdvdt\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}} and we know,v=drdt\overrightarrow v = \dfrac{{d\overrightarrow r }}{{dt}}
From the definition of torque,τ=(r×F)\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F )
Where, τ=\overrightarrow \tau = torque acting on the body
F=\overrightarrow F = Force acting on the body
r=\overrightarrow r = Displacement of the body
v=\overrightarrow v = Velocity of the body
m=m = Mass of the body
Using these two equations we will come to the solution of the above problem.

Complete step by step answer:
Mass of the body, m=1kgm = 1kg
At t=0s,v=0,r=0t = 0s,\overrightarrow v = 0,\overrightarrow r = 0
Also,F=αti^+βj^\overrightarrow F = \alpha t\widehat i + \beta \widehat j, α=1N/s,β=1N\alpha = 1N/s,\beta = 1N
So, F=ti^+j^\overrightarrow F = t\widehat i + \widehat j
From Newton’s second law,F=ma=mdvdt\overrightarrow F = m\overrightarrow a = m\dfrac{{d\overrightarrow v }}{{dt}}
Now, m\dfrac{{d\overrightarrow v }}{{dt}} = t\widehat i + \widehat j$$$$$ Or, md\overrightarrow v = (t\widehat i + \widehat j)dtIntegratingbothsides, Integrating both sides,m\int\limits_{v = 0}^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } Or, Or,\overrightarrow v = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j[\because m = 1kg]Or, Or,\dfrac{{d\overrightarrow r }}{{dt}} = \dfrac{{{t^2}}}{2}\widehat i + t\widehat jOr, Or,d\overrightarrow r = (\dfrac{{{t^2}}}{2}\widehat i + t\widehat j)dtIntegratingbothsides, Integrating both sides,\int\limits_{r = 0}^{r = \overrightarrow r } {d\overrightarrow r = \int\limits_{t = 0}^{t = t} {\left( {\dfrac{{{t^2}}}{2}\widehat i + t\widehat j} \right)} dt} Or, Or,\overrightarrow r = \dfrac{{{t^3}}}{6}\widehat i + \dfrac{{{t^2}}}{2}\widehat jAtt=1sec, At t= 1sec, \overrightarrow r = \dfrac{{{1^3}}}{6}\widehat i + \dfrac{{{1^2}}}{2}\widehat j = \dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j \overrightarrow v = \dfrac{{{1^2}}}{2}\widehat i + 1\widehat j = \dfrac{1}{2}\widehat i + 1\widehat j = \dfrac{1}{2}(\widehat i + 2\widehat j).(1)………………………….(1) \overrightarrow F = \widehat i + \widehat j
\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F ) \\
= (\dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j) \times (\widehat i + \widehat j) \\
= (\dfrac{1}{6} - \dfrac{1}{2})\widehat k \\
= - \dfrac{1}{3}\widehat k................................(2) \\
\left| {\overrightarrow r } \right| = \sqrt {{{(\dfrac{1}{6})}^2} + {{(\dfrac{1}{2})}^2}} = \dfrac{{\sqrt {10} }}{6}(3)Now,from(2)itisclearthatatt=1sec,……………………………………(3) Now, from (2) it is clear that at t= 1sec, |\overrightarrow \tau | = \dfrac{1}{3}.So,option(A)iscorrect.Directionof. So, option (A) is correct. Direction of \overrightarrow \tau istowardsunitvectoris towards unit vector - \widehat kfrom(2)So,option(B)isincorrect.From(1),Velocityofthebodyatt=1secisfrom (2) So, option (B) is incorrect. From (1), Velocity of the body at t= 1sec is \overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)m/sSo,option(C)iscorrect.From(3),themagnitudeofdisplacementofthebodyatt=1sism/s So, option (C) is correct. From (3), the magnitude of displacement of the body at t= 1s is \dfrac{{\sqrt {10} }}{6}m$
So, option (D) is incorrect.

So, the correct answers are “Options A and C”.

Note:
It is to be noted that, τ=(r×F)\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F ). (r×F)(F×r)(\overrightarrow r \times \overrightarrow F ) \ne (\overrightarrow F \times \overrightarrow r ). So, τ(F×r)\overrightarrow \tau \ne (\overrightarrow F \times \overrightarrow r ).
If the body is not at rest initially and let have a speed of v1\overrightarrow {{v_1}} , then limits of the integration will change, like,mv=v1v=vdv=t=0t=t(ti^+j^)dtm\int\limits_{v = \overrightarrow {{v_1}} }^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } .