Question
Question: Consider a body of mass 1.0kg at rest at the origin at time t=0. A force \(\overrightarrow F = \alph...
Consider a body of mass 1.0kg at rest at the origin at time t=0. A force F=αti+βj is applied on the body, where α=1.0N/s and β=1.0N. The torque acting on the body about the origin at time t=1.0s is τ. Which of the following statements is (are) true?
A. ∣τ∣=31N.m
B. The torque τis in the direction of unit vector +k
C. Velocity of the body at t= 1sec is v=21(i+2j)m/s
D. The magnitude of displacement of the body at t= 1s is 61m
Solution
From the vector form of 2nd law of Newton,F=ma=mdtdv and we know,v=dtdr
From the definition of torque,τ=(r×F)
Where, τ=torque acting on the body
F=Force acting on the body
r=Displacement of the body
v=Velocity of the body
m=Mass of the body
Using these two equations we will come to the solution of the above problem.
Complete step by step answer:
Mass of the body, m=1kg
At t=0s,v=0,r=0
Also,F=αti+βj, α=1N/s,β=1N
So, F=ti+j
From Newton’s second law,F=ma=mdtdv
Now, m\dfrac{{d\overrightarrow v }}{{dt}} = t\widehat i + \widehat j$$$$$
Or, md\overrightarrow v = (t\widehat i + \widehat j)dtIntegratingbothsides,m\int\limits_{v = 0}^{v = \overrightarrow v } {d\overrightarrow v = \int\limits_{t = 0}^{t = t} {(t\widehat i + \widehat j)dt} } Or,\overrightarrow v = \dfrac{{{t^2}}}{2}\widehat i + t\widehat j[\because m = 1kg]Or,\dfrac{{d\overrightarrow r }}{{dt}} = \dfrac{{{t^2}}}{2}\widehat i + t\widehat jOr,d\overrightarrow r = (\dfrac{{{t^2}}}{2}\widehat i + t\widehat j)dtIntegratingbothsides,\int\limits_{r = 0}^{r = \overrightarrow r } {d\overrightarrow r = \int\limits_{t = 0}^{t = t} {\left( {\dfrac{{{t^2}}}{2}\widehat i + t\widehat j} \right)} dt} Or,\overrightarrow r = \dfrac{{{t^3}}}{6}\widehat i + \dfrac{{{t^2}}}{2}\widehat jAtt=1sec,\overrightarrow r = \dfrac{{{1^3}}}{6}\widehat i + \dfrac{{{1^2}}}{2}\widehat j = \dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j\overrightarrow v = \dfrac{{{1^2}}}{2}\widehat i + 1\widehat j = \dfrac{1}{2}\widehat i + 1\widehat j = \dfrac{1}{2}(\widehat i + 2\widehat j)………………………….(1)\overrightarrow F = \widehat i + \widehat j
\overrightarrow \tau = (\overrightarrow r \times \overrightarrow F ) \\
= (\dfrac{1}{6}\widehat i + \dfrac{1}{2}\widehat j) \times (\widehat i + \widehat j) \\
= (\dfrac{1}{6} - \dfrac{1}{2})\widehat k \\
= - \dfrac{1}{3}\widehat k................................(2) \\
\left| {\overrightarrow r } \right| = \sqrt {{{(\dfrac{1}{6})}^2} + {{(\dfrac{1}{2})}^2}} = \dfrac{{\sqrt {10} }}{6}……………………………………(3)Now,from(2)itisclearthatatt=1sec,|\overrightarrow \tau | = \dfrac{1}{3}.So,option(A)iscorrect.Directionof\overrightarrow \tau istowardsunitvector - \widehat kfrom(2)So,option(B)isincorrect.From(1),Velocityofthebodyatt=1secis\overrightarrow v = \dfrac{1}{2}(\widehat i + 2\widehat j)m/sSo,option(C)iscorrect.From(3),themagnitudeofdisplacementofthebodyatt=1sis\dfrac{{\sqrt {10} }}{6}m$
So, option (D) is incorrect.
So, the correct answers are “Options A and C”.
Note:
It is to be noted that, τ=(r×F). (r×F)=(F×r). So, τ=(F×r).
If the body is not at rest initially and let have a speed of v1, then limits of the integration will change, like,mv=v1∫v=vdv=t=0∫t=t(ti+j)dt.