Solveeit Logo

Question

Question: Consider a 70% efficient hydrogen-oxygen fuel cell working under standard conditions at 1 bar and 29...

Consider a 70% efficient hydrogen-oxygen fuel cell working under standard conditions at 1 bar and 298 K. Its cell reaction is H2(g)+12O2(g)H2O(l)H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l).

The work derived from the cell on the consumption of 1.0×1031.0 \times 10^{-3} mol of H2(g)H_2(g) is used to compress 1.00 mol of a monoatomic ideal gas in thermally insulated container. What is the change in the temperature (in K) of the ideal gas?

The standard reduction potentials for the two half-cells are given below : O2(g)+4H+(aq)+4e2H2O(l),E=1.23VO_2(g) + 4H^+(aq) + 4e^- \longrightarrow 2H_2O(l), E^\circ = 1.23 V, 2H+(aq)+2eH2(g),E=0.00V2H^+(aq) + 2e^- \longrightarrow H_2(g), E^\circ = 0.00 V.

Use F=96500 C mol1,R=8.314 J mol1 K1F = 96500 \ C \ mol^{-1}, R = 8.314 \ J \ mol^{-1} \ K^{-1}.

Answer

13.32 K

Explanation

Solution

  1. Electrical Energy from the Fuel Cell:

    • Reaction: H2+12O2H2OH_2 + \frac{1}{2}O_2 \to H_2O.
    • Number of electrons per H2H_2 = 2.
    • For 1.0×1031.0 \times 10^{-3} mol H2H_2: ne=2×1.0×103=2.0×103n_e = 2 \times 1.0 \times 10^{-3} = 2.0 \times 10^{-3} mol electrons.
  2. Calculate Ideal Electrical Energy (ΔG):

    • Ecell=1.23VE^\circ_{\text{cell}} = 1.23 \,V
    • Energy = neFE=2.0×103×96500×1.23n_e \, F \, E^\circ = 2.0 \times 10^{-3} \times 96500 \times 1.23.
    • 2.0×103×96500193J\approx 2.0 \times 10^{-3} \times 96500 \approx 193\,J and then 193J×1.23237.39J193\,J \times 1.23 \approx 237.39\,J.
  3. Taking 70% Efficiency:

    • Work done, W=0.70×237.39J166.17JW = 0.70 \times 237.39 \,J \approx 166.17 \,J.
  4. Relating Work to Temperature Change in an Adiabatic Process:

    • Since compression is adiabatic (no heat exchange), the work done increases the internal energy.
    • For 1 mole of a monoatomic ideal gas, ΔU=32RΔT\Delta U = \frac{3}{2}R\,\Delta T and ΔU=W\Delta U = W.
    • Therefore, ΔT=2W3R=2×166.173×8.314\Delta T = \frac{2W}{3R} = \frac{2 \times 166.17}{3 \times 8.314}.
    • ΔT332.3424.94213.33K\Delta T \approx \frac{332.34}{24.942} \approx 13.33\,K.

Final Answer: Change in temperature = 13.32 K (approximately).