Solveeit Logo

Question

Question: Conductivity of a saturated solution of $Mg_3(PO_4)_2$ is $1.2 \times 10^{-5} S cm^{-1}$. Limiting e...

Conductivity of a saturated solution of Mg3(PO4)2Mg_3(PO_4)_2 is 1.2×105Scm11.2 \times 10^{-5} S cm^{-1}. Limiting equivalent conductivities of MgCl2,Na3PO4MgCl_2, Na_3PO_4 and NaClNaCl are 160, 140 and 100 Scm2eq\frac{S cm^2}{eq} respectively. Find KspK_{sp} of Mg3(PO4)2Mg_3(PO_4)_2

Answer

1.08×10231.08 \times 10^{-23}

Explanation

Solution

To find the KspK_{sp} of Mg3(PO4)2Mg_3(PO_4)_2, we need to follow these steps:

  1. Calculate the limiting equivalent conductivity (Λeq\Lambda_{eq}^\circ) of Mg3(PO4)2Mg_3(PO_4)_2.
  2. Use the conductivity of the saturated solution and Λeq\Lambda_{eq}^\circ to find the molar solubility (S) of Mg3(PO4)2Mg_3(PO_4)_2.
  3. Calculate KspK_{sp} from the molar solubility (S).

Step 1: Calculate Λeq\Lambda_{eq}^\circ for Mg3(PO4)2Mg_3(PO_4)_2

According to Kohlrausch's Law of independent migration of ions, the limiting equivalent conductivity of an electrolyte is the sum of the limiting equivalent conductivities of its constituent ions. We are given:

Λeq(MgCl2)=λeq(Mg2+)+λeq(Cl)=160Scm2eq\Lambda_{eq}^\circ(MgCl_2) = \lambda_{eq}^\circ(Mg^{2+}) + \lambda_{eq}^\circ(Cl^-) = 160 \frac{S cm^2}{eq}

Λeq(Na3PO4)=λeq(Na+)+λeq(PO43)=140Scm2eq\Lambda_{eq}^\circ(Na_3PO_4) = \lambda_{eq}^\circ(Na^+) + \lambda_{eq}^\circ(PO_4^{3-}) = 140 \frac{S cm^2}{eq}

Λeq(NaCl)=λeq(Na+)+λeq(Cl)=100Scm2eq\Lambda_{eq}^\circ(NaCl) = \lambda_{eq}^\circ(Na^+) + \lambda_{eq}^\circ(Cl^-) = 100 \frac{S cm^2}{eq}

We need Λeq(Mg3(PO4)2)=λeq(Mg2+)+λeq(PO43)\Lambda_{eq}^\circ(Mg_3(PO_4)_2) = \lambda_{eq}^\circ(Mg^{2+}) + \lambda_{eq}^\circ(PO_4^{3-}). This can be obtained by:

Λeq(Mg3(PO4)2)=Λeq(MgCl2)+Λeq(Na3PO4)Λeq(NaCl)\Lambda_{eq}^\circ(Mg_3(PO_4)_2) = \Lambda_{eq}^\circ(MgCl_2) + \Lambda_{eq}^\circ(Na_3PO_4) - \Lambda_{eq}^\circ(NaCl)

Λeq(Mg3(PO4)2)=160+140100=200Scm2eq\Lambda_{eq}^\circ(Mg_3(PO_4)_2) = 160 + 140 - 100 = 200 \frac{S cm^2}{eq}

Step 2: Calculate the molar solubility (S) of Mg3(PO4)2Mg_3(PO_4)_2

The relationship between conductivity (κ\kappa), equivalent conductivity (Λeq\Lambda_{eq}), and equivalent concentration (CeqC_{eq}) is:

κ=Λeq×Ceq1000\kappa = \frac{\Lambda_{eq} \times C_{eq}}{1000}

where κ\kappa is in Scm1S cm^{-1}, Λeq\Lambda_{eq} is in Scm2eq1S cm^2 eq^{-1}, and CeqC_{eq} is in eq/Leq/L. For a sparingly soluble salt like Mg3(PO4)2Mg_3(PO_4)_2 in a saturated solution, we can approximate ΛeqΛeq\Lambda_{eq} \approx \Lambda_{eq}^\circ.

Given κ=1.2×105Scm1\kappa = 1.2 \times 10^{-5} S cm^{-1}.

Ceq=κ×1000ΛeqC_{eq} = \frac{\kappa \times 1000}{\Lambda_{eq}^\circ}

Ceq=1.2×105Scm1×1000200Scm2eq1C_{eq} = \frac{1.2 \times 10^{-5} S cm^{-1} \times 1000}{200 S cm^2 eq^{-1}}

Ceq=1.2×102200=6×105eq/LC_{eq} = \frac{1.2 \times 10^{-2}}{200} = 6 \times 10^{-5} eq/L

Now, relate the equivalent concentration (CeqC_{eq}) to the molar solubility (S). For Mg3(PO4)2Mg_3(PO_4)_2, the total positive charge is 3×(+2)=+63 \times (+2) = +6, and the total negative charge is 2×(3)=62 \times (-3) = -6. Therefore, 1 mole of Mg3(PO4)2Mg_3(PO_4)_2 corresponds to 6 equivalents. So, Ceq=6SC_{eq} = 6S

6×105eq/L=6S6 \times 10^{-5} eq/L = 6S

S=1.0×105mol/LS = 1.0 \times 10^{-5} mol/L

Step 3: Calculate KspK_{sp} of Mg3(PO4)2Mg_3(PO_4)_2

The dissolution equilibrium for Mg3(PO4)2Mg_3(PO_4)_2 is:

Mg3(PO4)2(s)3Mg2+(aq)+2PO43(aq)Mg_3(PO_4)_2(s) \rightleftharpoons 3Mg^{2+}(aq) + 2PO_4^{3-}(aq)

If the molar solubility is S, then at equilibrium:

[Mg2+]=3S[Mg^{2+}] = 3S

[PO43]=2S[PO_4^{3-}] = 2S

The solubility product constant (KspK_{sp}) is given by:

Ksp=[Mg2+]3[PO43]2K_{sp} = [Mg^{2+}]^3 [PO_4^{3-}]^2

Ksp=(3S)3(2S)2K_{sp} = (3S)^3 (2S)^2

Ksp=(27S3)(4S2)K_{sp} = (27S^3)(4S^2)

Ksp=108S5K_{sp} = 108S^5

Substitute the value of S:

Ksp=108×(1.0×105)5K_{sp} = 108 \times (1.0 \times 10^{-5})^5

Ksp=108×(1.05×(105)5)K_{sp} = 108 \times (1.0^5 \times (10^{-5})^5)

Ksp=108×1.0×1025K_{sp} = 108 \times 1.0 \times 10^{-25}

Ksp=1.08×1023K_{sp} = 1.08 \times 10^{-23}

The final answer is 1.08×10231.08 \times 10^{-23}.

Explanation of the solution:

  1. Kohlrausch's Law: Λeq(Mg3(PO4)2)=Λeq(MgCl2)+Λeq(Na3PO4)Λeq(NaCl)=160+140100=200Scm2eq\Lambda_{eq}^\circ(Mg_3(PO_4)_2) = \Lambda_{eq}^\circ(MgCl_2) + \Lambda_{eq}^\circ(Na_3PO_4) - \Lambda_{eq}^\circ(NaCl) = 160 + 140 - 100 = 200 \frac{S cm^2}{eq}.
  2. Solubility from Conductivity: Use κ=Λeq×Ceq1000\kappa = \frac{\Lambda_{eq}^\circ \times C_{eq}}{1000}. Given κ=1.2×105Scm1\kappa = 1.2 \times 10^{-5} S cm^{-1}, Ceq=1.2×105×1000200=6×105eq/LC_{eq} = \frac{1.2 \times 10^{-5} \times 1000}{200} = 6 \times 10^{-5} eq/L. Since 1 mol of Mg3(PO4)2=6 eq1 \text{ mol of } Mg_3(PO_4)_2 = 6 \text{ eq}, molar solubility S=Ceq6=6×1056=1.0×105mol/LS = \frac{C_{eq}}{6} = \frac{6 \times 10^{-5}}{6} = 1.0 \times 10^{-5} mol/L.
  3. KspK_{sp} Calculation: For Mg3(PO4)23Mg2++2PO43Mg_3(PO_4)_2 \rightleftharpoons 3Mg^{2+} + 2PO_4^{3-}, Ksp=[Mg2+]3[PO43]2=(3S)3(2S)2=108S5K_{sp} = [Mg^{2+}]^3 [PO_4^{3-}]^2 = (3S)^3 (2S)^2 = 108S^5. Substitute S=1.0×105mol/LS = 1.0 \times 10^{-5} mol/L: Ksp=108×(1.0×105)5=108×1025=1.08×1023K_{sp} = 108 \times (1.0 \times 10^{-5})^5 = 108 \times 10^{-25} = 1.08 \times 10^{-23}.