Question
Mathematics Question on Matrices
Compute the indicated products (i)\begin{bmatrix}a&b\\\\-b&a\end{bmatrix}\begin{bmatrix}a&-b\\\b&a\end{bmatrix}$$(ii)\begin{bmatrix}1\\\2\\\3\end{bmatrix}\begin{bmatrix}2&3&4\end{bmatrix}$$(iii)\begin{bmatrix}1&-2\\\2&3\end{bmatrix}\begin{bmatrix}1&2&3\\\2&3&1\end{bmatrix}$$(iv)\begin{bmatrix}2&3&4\\\ 3&4&5\\\ 4&5&6\end{bmatrix}\begin{bmatrix}1&-3&5\\\ 0&2&4\\\ 3&0&5\end{bmatrix}
(v)\begin{bmatrix}2&1\\\3&2\\\\-1&1\end{bmatrix}\begin{bmatrix}2&-3\\\1&0\\\3&1\end{bmatrix}$$(vi)\begin{bmatrix}3&-1&3\\\\-1&0&2\end{bmatrix}\begin{bmatrix}2&-3\\\1&0\\\3&1\end{bmatrix}
(i)a−bba[a\b−ba]
=[a(a)+b(b) −b(a)+a(b)a(−b)+b(a)−b(−b)+a(a)]
=[a2+b2 −ab+ab−ab+abb2+a2]=[a2+b2 00a2+b2]
(ii)1\2\3[234]
=1(2) 2(2) 3(2)1(3)2(3)3(3)1(4)2(4)3(4)
=2 4 63694812
(iii)[1\2−23][1\22331]
=[1(1)−2(2) 2(1)+3(2)1(2)−2(3)2(2)+3(3)1(3)−2(1)2(3)+3(1)]
=[1−4 2+62−64+93−26+3]=[−3 8−41319]
(iv)2 3 43454561 0 3−320545
=2(1)+3(0)+4(3) 3(1)+4(0)+5(3)\4(1)+5(0)+6(3)2(−3)+3(2)+4(0)3(−3)+4(2)+5(0)4(−3)+5(2)+6(0)2(5)+3(4)+4(5)3(5)+4(4)+5(5)4(5)+5(4)+6(5)
=2+0+12 3+0+15 4+0+18−6+6+0−9+8+0−12+10+010+12+2015+16+2520+20+30
=14 18 220−1−2425670
(v)2\3−11212\1\3−301
=2(1)+1(−1) 3(1)+2(−1) −1(1)+1(−1)2(0)+1(2)3(0)+2(2)−1(0)+1(2)2(1)+1(1)3(1)+2(1)−1(1)+1(1)
=2−1 3−2 −1−10+20+40+22+13+2−1+1
=1 1 −2242350
(vi)3−1−10322\1\3−301
=[3(2)−1(1)+3(3) −1(2)+0(1)+2(3)3(−3)−1(0)+3(1)−1(−3)+0(0)+2(1)]
=[6−1+9 −2+0+6−9−0+33+0+2]=[14 4−65]