Solveeit Logo

Question

Mathematics Question on Determinants

Compute (AB)1\left(AB\right)^{-1}, if A=[112 023 324]A = \left[\begin{matrix}1&1&2\\\ 0&2&-3\\\ 3&-2&4\end{matrix}\right] and B1=[120 031 102]B^{-1}=\left[\begin{matrix}1&2&0\\\ 0&3&-1\\\ 1&0&2\end{matrix}\right]

A

119[16121 21117 1023]\frac{1}{19}\left[\begin{matrix}16&12&1\\\ 21&11&-7\\\ 10&-2&3\end{matrix}\right]

B

119[161210 21112 173]\frac{1}{19}\left[\begin{matrix}16&12&10\\\ 21&11&-2\\\ 1&-7&3\end{matrix}\right]

C

119[16121 21117 1023]\frac{1}{19}\left[\begin{matrix}16&12&1\\\ -21&-11&7\\\ 10&-2&3\end{matrix}\right]

D

119[16211 21117 1023]\frac{1}{19}\left[\begin{matrix}16&-21&1\\\ 21&11&7\\\ 10&-2&3\end{matrix}\right]

Answer

119[16121 21117 1023]\frac{1}{19}\left[\begin{matrix}16&12&1\\\ 21&11&-7\\\ 10&-2&3\end{matrix}\right]

Explanation

Solution

A=112 023 324=1(86)0+3(34)=190\left|A\right|=\left|\begin{matrix}1&1&2\\\ 0&2&-3\\\ 3&-2&4\end{matrix}\right|=1\left(8-6\right)-0+3\left(-3-4\right)=19\ne0(Expanding along C1)C_{1}) A1\therefore\quad A^{-1} exists. Now, adj(A) =[296 825 732]T=[287 923 652]=\left[\begin{matrix}2&-9&-6\\\ -8&-2&5\\\ -7&3&2\end{matrix}\right]^{T}=\left[\begin{matrix}2&-8&-7\\\ -9&-2&3\\\ -6&5&2\end{matrix}\right] A1=1A=adj(A)=119[287 923 652]\therefore\quad A^{-1}=\frac{1}{\left|A\right|}=adj\,\left(A\right)=\frac{-1}{19} \left[\begin{matrix}2&-8&-7\\\ -9&-2&3\\\ -6&5&2\end{matrix}\right] So, (AB)1=B1A1=[120 031 102]119[287 923 652]\left(AB\right)^{-1}=B^{-1}A^{-1}=\left[\begin{matrix}1&2&0\\\ 0&3&-1\\\ 1&0&2\end{matrix}\right]\cdot\frac{-1}{19}\left[\begin{matrix}2&-8&-7\\\ -9&-2&3\\\ -6&5&2\end{matrix}\right] =119[218084+07+6+0 027+60650+92 201280+107+10+4]=\frac{-1}{19} \left[\begin{matrix}2-18-0&-8-4+0&-7+6+0\\\ 0-27+6&0-6-5&0+9-2\\\ 2-0-12&-8-0+10&-7+10+4\end{matrix}\right] =119[16121 21117 1023]=119[16121 21117 1023]=\frac{-1}{19}\left[\begin{matrix}-16&-12&-1\\\ -21&-11&7\\\ -10&2&-3\end{matrix}\right]=\frac{1}{19} \left[\begin{matrix}16&12&1\\\ 21&11&-7\\\ 10&-2&3\end{matrix}\right]