Solveeit Logo

Question

Question: What is the scalar projection of $\vec{a}$ on $\vec{b}$?...

What is the scalar projection of a\vec{a} on b\vec{b}?

A

1

B

19/9

C

17/9

D

23/9

Answer

19/9

Explanation

Solution

The scalar projection of vector a\vec{a} on vector b\vec{b} is given by the formula: Scalar Projection=abb\text{Scalar Projection} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}

Given vectors are: a=i^2j^+k^\vec{a} = \hat{i} - 2\hat{j} + \hat{k} b=4i^4j^+7k^\vec{b} = 4\hat{i} - 4\hat{j} + 7\hat{k}

  1. Calculate the dot product ab\vec{a} \cdot \vec{b}: ab=(1)(4)+(2)(4)+(1)(7)=4+8+7=19\vec{a} \cdot \vec{b} = (1)(4) + (-2)(-4) + (1)(7) = 4 + 8 + 7 = 19
  2. Calculate the magnitude of vector b\vec{b}, i.e., b|\vec{b}|: b=(4)2+(4)2+(7)2=16+16+49=81=9|\vec{b}| = \sqrt{(4)^2 + (-4)^2 + (7)^2} = \sqrt{16 + 16 + 49} = \sqrt{81} = 9
  3. Calculate the scalar projection of a\vec{a} on b\vec{b}: Scalar Projection=abb=199\text{Scalar Projection} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} = \frac{19}{9}