Question
Question: Let $f_1(x) = (x-2)^2$, $f_2(x) = ((x-2)^2 - 2)^2$, $f_3(x) = (((x-2)^2 - 2)^2 - 2)^2$,...... and so...
Let f1(x)=(x−2)2, f2(x)=((x−2)2−2)2, f3(x)=(((x−2)2−2)2−2)2,...... and so on ; so that fk(x)=k times(((...(x−2)2−2)2−2)2.....−2)2=Ak+Bkx+Ckx2+Dkx3+......
B5 is equal to

-2048
-32
-1024
-512
-1024
Solution
Define fk(x)=(fk−1(x)−2)2 for k≥2, and f1(x)=(x−2)2. The coefficient Bk is fk′(0).
Calculate B1: f1(x)=(x−2)2⟹f1′(x)=2(x−2). So, B1=f1′(0)=2(0−2)=−4.
Find the recurrence for Bk: Differentiate fk(x)=(fk−1(x)−2)2 to get fk′(x)=2(fk−1(x)−2)fk−1′(x).
Evaluate at x=0: fk′(0)=2(fk−1(0)−2)fk−1′(0).
First, find fk(0): f1(0)=4. If fk−1(0)=4, then fk(0)=(4−2)2=4. Thus, fk(0)=4 for all k.
Substitute fk−1(0)=4 into the recurrence for fk′(0): Bk=2(4−2)Bk−1=4Bk−1.
Solve the recurrence: Bk=B1⋅4k−1=−4⋅4k−1=−4k.
Calculate B5: B5=−45=−1024.