Solveeit Logo

Question

Question: Let $f_1(x) = (x-2)^2$, $f_2(x) = ((x-2)^2 - 2)^2$, $f_3(x) = (((x-2)^2 - 2)^2 - 2)^2$,...... and so...

Let f1(x)=(x2)2f_1(x) = (x-2)^2, f2(x)=((x2)22)2f_2(x) = ((x-2)^2 - 2)^2, f3(x)=(((x2)22)22)2f_3(x) = (((x-2)^2 - 2)^2 - 2)^2,...... and so on ; so that fk(x)=(((...(x2)22)22)2.....2)2k times=Ak+Bkx+Ckx2+Dkx3+......f_k(x) = \underbrace{(((...(x-2)^2 - 2)^2 - 2)^2..... - 2)^2}_{k \text{ times}} = A_k + B_k x + C_k x^2 + D_k x^3 + ......

B5B_5 is equal to

A

-2048

B

-32

C

-1024

D

-512

Answer

-1024

Explanation

Solution

Define fk(x)=(fk1(x)2)2f_k(x) = (f_{k-1}(x) - 2)^2 for k2k \ge 2, and f1(x)=(x2)2f_1(x) = (x-2)^2. The coefficient BkB_k is fk(0)f_k'(0).

Calculate B1B_1: f1(x)=(x2)2    f1(x)=2(x2)f_1(x) = (x-2)^2 \implies f_1'(x) = 2(x-2). So, B1=f1(0)=2(02)=4B_1 = f_1'(0) = 2(0-2) = -4.

Find the recurrence for BkB_k: Differentiate fk(x)=(fk1(x)2)2f_k(x) = (f_{k-1}(x) - 2)^2 to get fk(x)=2(fk1(x)2)fk1(x)f_k'(x) = 2(f_{k-1}(x) - 2)f_{k-1}'(x).

Evaluate at x=0x=0: fk(0)=2(fk1(0)2)fk1(0)f_k'(0) = 2(f_{k-1}(0) - 2)f_{k-1}'(0).

First, find fk(0)f_k(0): f1(0)=4f_1(0) = 4. If fk1(0)=4f_{k-1}(0)=4, then fk(0)=(42)2=4f_k(0) = (4-2)^2 = 4. Thus, fk(0)=4f_k(0)=4 for all kk.

Substitute fk1(0)=4f_{k-1}(0)=4 into the recurrence for fk(0)f_k'(0): Bk=2(42)Bk1=4Bk1B_k = 2(4-2)B_{k-1} = 4B_{k-1}.

Solve the recurrence: Bk=B14k1=44k1=4kB_k = B_1 \cdot 4^{k-1} = -4 \cdot 4^{k-1} = -4^k.

Calculate B5B_5: B5=45=1024B_5 = -4^5 = -1024.