Solveeit Logo

Question

Question: Consider the equations (n > 2) $ax_1^2 + bx_1 + c = x_2$ $ax_2^2 + bx_2 + c = x_3$ $ax_3^2 + bx_3...

Consider the equations (n > 2)

ax12+bx1+c=x2ax_1^2 + bx_1 + c = x_2

ax22+bx2+c=x3ax_2^2 + bx_2 + c = x_3

ax32+bx3+c=x4ax_3^2 + bx_3 + c = x_4

...

axn12+bxn1+c=xnax_{n-1}^2 + bx_{n-1} + c = x_n

axn2+bxn+c=x1ax_n^2 + bx_n + c = x_1

in the variables x1,x2,....,xnx_1, x_2, ...., x_n

a, b, c be real numbers, a ≠ 0

Let us put x2x1=X1,x3x2=X2,......,xnxn1=Xn1x_2 - x_1 = X_1, x_3 - x_2 = X_2, ......, x_n - x_{n-1} = X_{n-1} and x1xn=Xnx_1 - x_n = X_n

If (b1)24ac=0(b-1)^2 - 4ac = 0, then the system has

A

no solution

B

n solutions

C

(n-1) solutions

D

one solution

Answer

one solution

Explanation

Solution

Given the cyclic system

ax12+bx1+c=x2,ax_1^2 + bx_1 + c = x_2,

ax22+bx2+c=x3,ax_2^2 + bx_2 + c = x_3,

...

axn12+bxn1+c=xn,ax_{n-1}^2 + bx_{n-1} + c = x_n,

axn2+bxn+c=x1,ax_n^2 + bx_n + c = x_1,

define the function

f(x)=ax2+bx+c.f(x) = ax^2 + bx + c.

Then the system can be written as

f(xi)=xi+1,f(x_i) = x_{i+1}, with xn+1=x1x_{n+1}=x_1.

A fixed point α\alpha of ff satisfies

f(α)=α    aα2+bx+c=α,f(\alpha)=\alpha \implies a\alpha^2 + bx + c = \alpha,

or

aα2+(b1)α+c=0.a\alpha^2 + (b-1)\alpha + c = 0.

The discriminant of this quadratic is given as

Δ=(b1)24ac.\Delta = (b-1)^2 - 4ac.

We are given Δ=0\Delta = 0, so the quadratic has a double (unique) solution:

α=1b2a.\alpha = \frac{1-b}{2a}.

Now, note that for any xx,

f(x)x=a(xα)2.f(x)-x = a(x-\alpha)^2.

Thus for each ii:

xi+1xi=a(xiα)2.x_{i+1} - x_i = a (x_i-\alpha)^2.

Summing these differences cyclically gives

i=1n(xi+1xi)=ai=1n(xiα)2.\sum_{i=1}^{n} (x_{i+1} - x_i) = a\sum_{i=1}^{n}(x_i-\alpha)^2.

Since the left-hand side telescopes to 0, we have

ai=1n(xiα)2=0.a\sum_{i=1}^{n}(x_i-\alpha)^2 = 0.

Because a0a\neq 0 and squares are nonnegative, it follows that

xiα=0x_i - \alpha = 0 for all ii,

or

x1=x2==xn=α.x_1 = x_2 = \cdots = x_n = \alpha.

Therefore, there is only one solution.