Solveeit Logo

Question

Question: Complete solution set of the equation \|x<sup>2</sup> - 1 + cosx\| = \|x<sup>2</sup>− 11 + \|cosx\| ...

Complete solution set of the equation |x2 - 1 + cosx| = |x2− 11 + |cosx| belonging to (-2π, π), is

A

[π2,π2](1,1)\left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right] \sim ( - 1,1 )

B

[3π2,π2][1,1][π2,π)\left[ - \frac { 3 \pi } { 2 } , - \frac { \pi } { 2 } \right] \cup [ - 1,1 ] \cup \left[ \frac { \pi } { 2 } , \pi \right)

C

[3π2,π2][π2,π)\left[ - \frac { 3 \pi } { 2 } , - \frac { \pi } { 2 } \right] \cup \left[ \frac { \pi } { 2 } , \pi \right)

D

(2π,3π2][π2,1][1,π2]\left( - 2\pi, - \frac{3\pi}{2} \right\rbrack \cup \left\lbrack - \frac{\pi}{2}, - 1 \right\rbrack \cup \left\lbrack 1,\frac{\pi}{2} \right\rbrack

Answer

(2π,3π2][π2,1][1,π2]\left( - 2\pi, - \frac{3\pi}{2} \right\rbrack \cup \left\lbrack - \frac{\pi}{2}, - 1 \right\rbrack \cup \left\lbrack 1,\frac{\pi}{2} \right\rbrack

Explanation

Solution

|x2 - 1 + cosx| = |x2 -1| + |cosx|. It implies that (x2 -1).

cos ≥ 0 because |x + y| = |x| + |y| if x y ≥ 0. Sign scheme of

(x2 - 1) cosx is

Thus solution is

[π2,1][1,π2](2π,3π2]\left[ - \frac { \pi } { 2 } , - 1 \right] \cup \left[ 1 , \frac { \pi } { 2 } \right] \cup \left( - 2 \pi , \frac { 3 \pi } { 2 } \right]