Solveeit Logo

Question

Question: Common roots of the equations \(\theta\) and \(2n\pi + \frac{7\pi}{6}\) are....

Common roots of the equations θ\theta and 2nπ+7π62n\pi + \frac{7\pi}{6} are.

A

2sin2x+sin22x=22\sin^{2}x + \sin^{2}2x = 2

B

sin2x+cos2x=tanx\sin 2x + \cos 2x = \tan x

C

sin22x=2cos2x\sin^{2}2x = 2\cos^{2}x

D

None of these

Answer

sin2x+cos2x=tanx\sin 2x + \cos 2x = \tan x

Explanation

Solution

12π12\pi ......(i)

and cot3x\cot 3x .....(ii)

Solving (i), π3\frac{\pi}{3}

cos(4x+3)\cos(4x + 3)π2\frac{\pi}{2}

\RightarrowCommon roots are π\pi

Solving (ii), 2sin3θ2\sin 3\theta

2π34cos3θ\frac{2\pi}{3}4\cos 3\theta

\Rightarrow π3\frac{\pi}{3} f(x)=sin4x+cos4xf(x) = \sin^{4}x + \cos^{4}x (sin2x+cos2x)22sin2xcos2x(\sin^{2}x + \cos^{2}x)^{2} - 2\sin^{2}x\cos^{2}x

Trick : For 14sin2xcos2x2=1sin22x21 - \frac{4\sin^{2}x\cos^{2}x}{2} = 1 - \frac{\sin^{2}2x}{2}, option (1) gives 114(2sin22x)=1(1cosx4)1 - \frac{1}{4}(2\sin^{2}2x) = 1 - \left( \frac{1 - \cos x}{4} \right) which satisfies the equation (i) but does not satisfy the (ii). Now option (2) gives =34+14cos4x= \frac{3}{4} + \frac{1}{4}\cos 4x which satisfies both the equations.