Solveeit Logo

Question

Chemistry Question on Thermodynamics

Combustion of 1 mole of benzene is expressed as C6_6H6_6(l) + 152\frac{15}{2}O2_2(g) → 6CO2_2(g) + 3H2_2O(l). The standard enthalpy of combustion of 2 mol of benzene is x kJ. x = __________
(1) standard Enthalpy of formation of 1 mol of C6_6H6_6(l), for the reaction 6C(graphite) + 3H2_2(g) → C6_6H6_6(l) is 48.5 kJ mol1^{-1}.
(2) Standard Enthalpy of formation of 1 mol of CO2CO_2_(g), _for the reaction 6(graphite) + O2(g)O_2(g) → CO2_2(g) is -393.5 kJ mol1^{-1}.
(3) Standard Enthalpy of formation of 1 mol of H2_2O(l), for the reaction H2_2(g) + 12\frac{1}{2}O2_2(g) → H2_2O(l) is -286 kJ mol1^{-1}.

Answer

The enthalpy change for the combustion reaction can be calculated using Hess's law:
ΔH=ΔHf(products)ΔHf(reactants).\Delta H = \sum \Delta H_f (\text{products}) - \sum \Delta H_f (\text{reactants}).
Step 1: Write the given reaction
The reaction for 1 mole of benzene is:
C6H6(l)+152O2(g)6CO2(g)+3H2O(l).\text{C}_6\text{H}_6(l) + \frac{15}{2} \text{O}_2(g) \rightarrow 6\text{CO}_2(g) + 3\text{H}_2\text{O}(l).
Step 2: Calculate the enthalpy change for 1 mole of benzene
Using the standard enthalpies of formation:
ΔHf(CO2(g))=393.5kJ/mol,\Delta H_f (\text{CO}_2(g)) = -393.5 \, \text{kJ/mol},
ΔHf(H2O(l))=286kJ/mol,\Delta H_f (\text{H}_2\text{O}(l)) = -286 \, \text{kJ/mol},
ΔHf(C6H6(l))=48.5kJ/mol.\Delta H_f (\text{C}_6\text{H}_6(l)) = 48.5 \, \text{kJ/mol}.
For the products:
ΔHf(products)=[6×(393.5)]+[3×(286)].\Delta H_f (\text{products}) = [6 \times (-393.5)] + [3 \times (-286)].
ΔHf(products)=2361858=3219kJ/mol.\Delta H_f (\text{products}) = -2361 - 858 = -3219 \, \text{kJ/mol}.
For the reactants:
ΔHf(reactants)=[1×48.5]+(152×0).\Delta H_f (\text{reactants}) = [1 \times 48.5] + \left(\frac{15}{2} \times 0 \right).
ΔHf(reactants)=48.5kJ/mol.\Delta H_f (\text{reactants}) = 48.5 \, \text{kJ/mol}.
The enthalpy change for the combustion of 1 mole of benzene is:
ΔH=ΔHf(products)ΔHf(reactants),\Delta H = \Delta H_f (\text{products}) - \Delta H_f (\text{reactants}),
ΔH=321948.5=3267.5kJ/mol.\Delta H = -3219 - 48.5 = -3267.5 \, \text{kJ/mol}.
Step 3: Calculate for 2 moles of benzene
For 2 moles of benzene:
ΔH=2×(3267.5)=6535kJ.\Delta H = 2 \times (-3267.5) = -6535 \, \text{kJ}.
Final Answer: x=6535kJx = 6535 \, \text{kJ}.