Solveeit Logo

Question

Question: combination of two thin lenses with focal lengths \(f _ { 2 }\) respectively forms an image of dista...

combination of two thin lenses with focal lengths f2f _ { 2 } respectively forms an image of distant object at distance 60 cm when lenses are in contact. The position of this image shifts by 30 cm towards the combination when two lenses are separated by 10 cm. The corresponding values of f2f _ { 2 } are

A

30 cm, – 60 cm

B

20 cm, – 30 cm

C

15 cm, – 20 cm

D

12 cm, – 15 cm

Answer

20 cm, – 30 cm

Explanation

Solution

Initially F=60 cmF = 60 \mathrm {~cm} (Focal length of combination)

Hence by using 1F=1f1+1f2\frac { 1 } { F } = \frac { 1 } { f _ { 1 } } + \frac { 1 } { f _ { 2 } }

f1f2f1+f2\frac { f _ { 1 } f _ { 2 } } { f _ { 1 } + f _ { 2 } } ......(i)

Finally by using 1F=1f1+1f2df1f2\frac { 1 } { F ^ { \prime } } = \frac { 1 } { f _ { 1 } } + \frac { 1 } { f _ { 2 } } - \frac { d } { f _ { 1 } f _ { 2 } }

where F=30 cmF ^ { \prime } = 30 \mathrm {~cm} and d = 10 cm

130=1f1+1f210f1f2\frac { 1 } { 30 } = \frac { 1 } { f _ { 1 } } + \frac { 1 } { f _ { 2 } } - \frac { 10 } { f _ { 1 } f _ { 2 } } ......(ii)

From equations (i) and (ii) f1f2=600f _ { 1 } f _ { 2 } = - 600

From equation (i) f1+f2=10f _ { 1 } + f _ { 2 } = - 10 …..(iii)

Also, difference of focal lengths can written as f1f2=(f1+f2)24f1f2f _ { 1 } - f _ { 2 } = \sqrt { \left( f _ { 1 } + f _ { 2 } \right) ^ { 2 } - 4 f _ { 1 } f _ { 2 } }

f1f2=50f _ { 1 } - f _ { 2 } = 50 …..(iv)

From (iii) × (iv) f1=20f _ { 1 } = 20 and f2=30f _ { 2 } = - 30