Solveeit Logo

Question

Question: Column-I | Column-II :--- | :--- (A) $\frac{3}{x^4}^{(\log_3 x)^2 + \log_3 x} = \sqrt{3}$ | (p) numb...

Column-IColumn-II
(A) 3x4(log3x)2+log3x=3\frac{3}{x^4}^{(\log_3 x)^2 + \log_3 x} = \sqrt{3}(p) number of solutions = 2
(B) log0.2x+2x1\log_{0.2} \frac{x+2}{x} \le 1(q) number of solutions = 3
(C) log2(x+5)=6x\log_2 (x+5) = 6-x(r) number of solution = 1
(s) number of solution = 0
(t) infinite number of solutions
Answer

(A)-(r), (B)-(t), (C)-(r)

Explanation

Solution

For (A): Let y=log3xy = \log_3 x. The equation becomes 3x4y2+y=3\frac{3}{x^4}^{y^2+y} = \sqrt{3}. Taking log3\log_3 on both sides: (log33log3x4)(y2+y)=log33(\log_3 3 - \log_3 x^4)(y^2+y) = \log_3 \sqrt{3} (14log3x)(y2+y)=12(1 - 4\log_3 x)(y^2+y) = \frac{1}{2} (14y)(y2+y)=12(1 - 4y)(y^2+y) = \frac{1}{2} y2+y4y34y2=12y^2+y - 4y^3 - 4y^2 = \frac{1}{2} 4y33y2+y=12-4y^3 - 3y^2 + y = \frac{1}{2} 8y3+6y22y+1=08y^3 + 6y^2 - 2y + 1 = 0. Let f(y)=8y3+6y22y+1f(y) = 8y^3 + 6y^2 - 2y + 1. f(y)=24y2+12y2f'(y) = 24y^2 + 12y - 2. The roots of f(y)=0f'(y)=0 are y=12±1444(24)(2)48=12±144+19248=12±33648y = \frac{-12 \pm \sqrt{144 - 4(24)(-2)}}{48} = \frac{-12 \pm \sqrt{144 + 192}}{48} = \frac{-12 \pm \sqrt{336}}{48}. Since f(y)f'(y) has two real roots, f(y)f(y) has local extrema. f(y)f(y) \to \infty as yy \to \infty and f(y)f(y) \to -\infty as yy \to -\infty. The discriminant of the cubic is positive, indicating one real root. Thus, there is one real value for yy, which means one real value for xx. So (A) matches (r).

For (B): Domain is x+2x>0\frac{x+2}{x} > 0, so x(,2)(0,)x \in (-\infty, -2) \cup (0, \infty). log0.2x+2x1\log_{0.2} \frac{x+2}{x} \le 1. Since base is 0.2<10.2 < 1, we reverse the inequality: x+2x(0.2)1=15\frac{x+2}{x} \ge (0.2)^1 = \frac{1}{5} x+2x150\frac{x+2}{x} - \frac{1}{5} \ge 0 5(x+2)x5x0    4x+105x0    2(2x+5)5x0\frac{5(x+2) - x}{5x} \ge 0 \implies \frac{4x+10}{5x} \ge 0 \implies \frac{2(2x+5)}{5x} \ge 0. Critical points are x=5/2x = -5/2 and x=0x=0. The inequality holds for x(,5/2](0,)x \in (-\infty, -5/2] \cup (0, \infty). Intersecting with the domain (,2)(0,)(-\infty, -2) \cup (0, \infty), we get (,5/2](0,)(-\infty, -5/2] \cup (0, \infty). This set has infinite solutions. So (B) matches (t).

For (C): Domain is x+5>0    x>5x+5 > 0 \implies x > -5. Consider f(x)=log2(x+5)f(x) = \log_2(x+5) (increasing) and g(x)=6xg(x) = 6-x (decreasing). They can intersect at most once. By inspection, x=3x=3: log2(3+5)=log28=3\log_2(3+5) = \log_2 8 = 3 and 63=36-3 = 3. So x=3x=3 is the unique solution. Thus (C) matches (r).