Solveeit Logo

Question

Question: The value of $\bigg|4\bigg(2cos^3\frac{\pi}{7}-cos^2\frac{\pi}{7}-cos\frac{\pi}{7}\bigg)\bigg|$ is...

The value of 4(2cos3π7cos2π7cosπ7)\bigg|4\bigg(2cos^3\frac{\pi}{7}-cos^2\frac{\pi}{7}-cos\frac{\pi}{7}\bigg)\bigg| is

Answer

1

Explanation

Solution

Let x=π7x = \frac{\pi}{7}. The expression inside the absolute value is E=4(2cos3xcos2xcosx)E = 4(2\cos^3 x - \cos^2 x - \cos x).

We use the triple angle formula for cosine: cos(3x)=4cos3x3cosx\cos(3x) = 4\cos^3 x - 3\cos x. From this, 4cos3x=cos(3x)+3cosx4\cos^3 x = \cos(3x) + 3\cos x. Dividing by 2, 2cos3x=12(cos(3x)+3cosx)2\cos^3 x = \frac{1}{2}(\cos(3x) + 3\cos x).

Substitute this into the expression for EE: E=4(12(cos(3x)+3cosx)cos2xcosx)E = 4\left(\frac{1}{2}(\cos(3x) + 3\cos x) - \cos^2 x - \cos x\right) E=2(cos(3x)+3cosx)4cos2x4cosxE = 2(\cos(3x) + 3\cos x) - 4\cos^2 x - 4\cos x E=2cos(3x)+6cosx4cos2x4cosxE = 2\cos(3x) + 6\cos x - 4\cos^2 x - 4\cos x E=2cos(3x)+2cosx4cos2xE = 2\cos(3x) + 2\cos x - 4\cos^2 x

Next, we use the double angle formula for cosine: cos(2x)=2cos2x1\cos(2x) = 2\cos^2 x - 1. From this, 2cos2x=1+cos(2x)2\cos^2 x = 1 + \cos(2x). So, 4cos2x=2(1+cos(2x))=2+2cos(2x)4\cos^2 x = 2(1 + \cos(2x)) = 2 + 2\cos(2x).

Substitute this into the expression for EE: E=2cos(3x)+2cosx(2+2cos(2x))E = 2\cos(3x) + 2\cos x - (2 + 2\cos(2x)) E=2cos(3x)+2cosx22cos(2x)E = 2\cos(3x) + 2\cos x - 2 - 2\cos(2x) E=2cos(3x)2cos(2x)+2cosx2E = 2\cos(3x) - 2\cos(2x) + 2\cos x - 2.

Now, we need to evaluate this expression with x=π7x = \frac{\pi}{7}. Consider the roots of the equation z71=0z^7 - 1 = 0. These are zk=ei2kπ7z_k = e^{i \frac{2k\pi}{7}} for k=0,1,,6k=0, 1, \dots, 6. Since z71=(z1)(z6+z5+z4+z3+z2+z+1)z^7 - 1 = (z-1)(z^6 + z^5 + z^4 + z^3 + z^2 + z + 1), the roots of z6+z5+z4+z3+z2+z+1=0z^6 + z^5 + z^4 + z^3 + z^2 + z + 1 = 0 are zk=ei2kπ7z_k = e^{i \frac{2k\pi}{7}} for k=1,2,,6k=1, 2, \dots, 6. Divide the equation z6+z5+z4+z3+z2+z+1=0z^6 + z^5 + z^4 + z^3 + z^2 + z + 1 = 0 by z3z^3 (since z0z \neq 0): z3+z2+z+1+1z+1z2+1z3=0z^3 + z^2 + z + 1 + \frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} = 0 Group terms: (z3+1z3)+(z2+1z2)+(z+1z)+1=0\left(z^3 + \frac{1}{z^3}\right) + \left(z^2 + \frac{1}{z^2}\right) + \left(z + \frac{1}{z}\right) + 1 = 0. For z=eiθz = e^{i\theta}, we know zn+1zn=2cos(nθ)z^n + \frac{1}{z^n} = 2\cos(n\theta). Let θ=2π7\theta = \frac{2\pi}{7}. Then z=ei2π7z = e^{i \frac{2\pi}{7}}. Substituting into the grouped equation: 2cos(32π7)+2cos(22π7)+2cos(2π7)+1=02\cos\left(3 \cdot \frac{2\pi}{7}\right) + 2\cos\left(2 \cdot \frac{2\pi}{7}\right) + 2\cos\left(\frac{2\pi}{7}\right) + 1 = 0 2cos(6π7)+2cos(4π7)+2cos(2π7)+1=02\cos\left(\frac{6\pi}{7}\right) + 2\cos\left(\frac{4\pi}{7}\right) + 2\cos\left(\frac{2\pi}{7}\right) + 1 = 0.

Now, relate these angles to π7\frac{\pi}{7}: cos(6π7)=cos(ππ7)=cos(π7)\cos\left(\frac{6\pi}{7}\right) = \cos\left(\pi - \frac{\pi}{7}\right) = -\cos\left(\frac{\pi}{7}\right). cos(4π7)=cos(π3π7)=cos(3π7)\cos\left(\frac{4\pi}{7}\right) = \cos\left(\pi - \frac{3\pi}{7}\right) = -\cos\left(\frac{3\pi}{7}\right).

Substitute these back into the equation: 2(cosπ7)+2(cos3π7)+2cos2π7+1=02\left(-\cos\frac{\pi}{7}\right) + 2\left(-\cos\frac{3\pi}{7}\right) + 2\cos\frac{2\pi}{7} + 1 = 0 2cosπ72cos3π7+2cos2π7+1=0-2\cos\frac{\pi}{7} - 2\cos\frac{3\pi}{7} + 2\cos\frac{2\pi}{7} + 1 = 0. Rearranging this equation, we get: 2cos2π72cos3π72cosπ7=12\cos\frac{2\pi}{7} - 2\cos\frac{3\pi}{7} - 2\cos\frac{\pi}{7} = -1.

Let's compare this with our expression for EE: E=2cos3π72cos2π7+2cosπ72E = 2\cos\frac{3\pi}{7} - 2\cos\frac{2\pi}{7} + 2\cos\frac{\pi}{7} - 2. Notice that the first three terms of EE are the negative of the left side of the equation we derived: (2cos2π72cos3π72cosπ7)=(1)=1-(2\cos\frac{2\pi}{7} - 2\cos\frac{3\pi}{7} - 2\cos\frac{\pi}{7}) = -(-1) = 1. So, 2cos3π72cos2π7+2cosπ7=12\cos\frac{3\pi}{7} - 2\cos\frac{2\pi}{7} + 2\cos\frac{\pi}{7} = 1.

Substitute this value back into the expression for EE: E=12=1E = 1 - 2 = -1.

Finally, we need to find the absolute value: E=1=1|E| = |-1| = 1.