Solveeit Logo

Question

Question: Column 1, 2, 3 contains conics, equation of tangents, and points of contact respectively.\[\] C...

Column 1, 2, 3 contains conics, equation of tangents, and points of contact respectively.$$$$

Column IColumn IIColumn III
(I)x2+y2=a2{{x}^{2}}+{{y}^{2}}={{a}^{2}}(i)my=m2x+amy={{m}^{2}}x+a(P) (am2,2am)\left( \dfrac{a}{{{m}^{2}}},\dfrac{2a}{m} \right)
(II)x2+a2y2=a2{{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}(ii)y=mx+am2+1y=mx+a\sqrt{{{m}^{2}}+1}(Q) (amm2+1,am2+1)\left( \dfrac{-am}{\sqrt{{{m}^{2}}+1}},\dfrac{a}{\sqrt{{{m}^{2}}+1}} \right)
(III)y2=4ax{{y}^{2}}=4ax(iii)y=mx+a2m21y=mx+\sqrt{{{a}^{2}}{{m}^{2}}-1}(R)(a2ma2m2+1,1a2m2+1)\left( \dfrac{-{{a}^{2}}m}{\sqrt{{{a}^{2}}{{m}^{2}}+1}},\dfrac{1}{\sqrt{{{a}^{2}}{{m}^{2}}+1}} \right)
(IV)x2a2y2=a2{{x}^{2}}-{{a}^{2}}{{y}^{2}}={{a}^{2}}(iv)y=mx+a2m2+1y=mx+\sqrt{{{a}^{2}}{{m}^{2}}+1}(S)(a2ma2m21,1a2m21)\left( \dfrac{-{{a}^{2}}m}{\sqrt{{{a}^{2}}{{m}^{2}}-1}},\dfrac{-1}{\sqrt{{{a}^{2}}{{m}^{2}}-1}} \right)

Which of the following options is the only CORRECT combination? A.(II)(iii)(S) A. (II) (iii) (S)
B. (I) (ii) (R) C.(III)(i)(P) C. (III) (i) (P)
D. (IV)(i)(S) $$$$

Explanation

Solution

We assume the equation tangent as y=mx+cy=mx+c where mm is the slope and cc is the yy-intercept. We put yy in the equation of each conic and use the condition on discriminant D=b24ac=0D={{b}^{2}}-4ac=0 for rational roots as coordinate point of contact. We find cc and the the point of contact using quadratic formula.$$$$

Complete step-by-step solution:
We know that the quadratic equation of the form ax2+bx+c=0a{{x}^{2}}+bx+c=0 where a0,b,cRa\ne 0,b,c\in R will have rational roots when the discriminant D=b24ac=0D={{b}^{2}}-4ac=0 . The roots of the equations are given by the quadratic formula
x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}
Let us assume that the tangent of all the conics in the column-I of the question in slope-intercept form is
y=mx+c....(1)y=mx+c....\left( 1 \right)
Here mmis the slope and ccis the yy-intercept of the tangent. Now let us find the intercepts of the conics in column-I.$$$$
(I) The given equation of conic is
x2+y2=a2{{x}^{2}}+{{y}^{2}}={{a}^{2}}
Let us put y=mx+cy=mx+c in the above equation and have,

& {{x}^{2}}+{{\left( mx+c \right)}^{2}}={{a}^{2}} \\\ & \Rightarrow {{x}^{2}}+{{m}^{2}}{{x}^{2}}+{{c}^{2}}-{{a}^{2}}+2cmx=0 \\\ & \Rightarrow \left( 1+{{m}^{2}} \right){{x}^{2}}+2cmx+{{c}^{2}}-{{a}^{2}}=0 \\\ \end{aligned}$$ The above equation is a quadratic equation whose solutions are coordinates point of contact. The $x$ and $y-$coordinates of point of contact in two dimensions have to be rational numbers. So by the condition on discriminant we find, $$\begin{aligned} & D={{\left( 2cm \right)}^{2}}-4\left( 1+{{m}^{2}} \right)\left( {{c}^{2}}-{{a}^{2}} \right)=0 \\\ & \Rightarrow 4{{c}^{2}}{{m}^{2}}-4\left( {{c}^{2}}-{{a}^{2}}+{{m}^{2}}{{c}^{2}}-{{m}^{2}}{{a}^{2}} \right)=0 \\\ & \Rightarrow 4\left( {{c}^{2}}{{m}^{2}}-{{c}^{2}}+{{a}^{2}}-{{m}^{2}}{{c}^{2}}-{{m}^{2}}{{a}^{2}} \right)=0 \\\ & \Rightarrow {{c}^{2}}={{a}^{2}}+{{a}^{2}}{{m}^{2}} \\\ & \Rightarrow c=\pm a\sqrt{1+{{m}^{2}}} \\\ \end{aligned}$$ So the equation of the tangent is $$y=mx\pm a\sqrt{{{m}^{2}}+1}$$ The coordinates of the point of contact of the conic are roots which we find by putting $c=a\sqrt{1+{{m}^{2}}},{{c}^{2}}={{a}^{2}}+{{a}^{2}}{{m}^{2}}$ from above calculation of intercept above. We have the $x-$coordinate of point of contact as, $$\begin{aligned} & x=\dfrac{-2cm \pm 4\left( -{{c}^{2}}+{{a}^{2}}+{{m}^{2}}{{a}^{2}} \right)}{2\left( 1+{{m}^{2}} \right)} \\\ & =\dfrac{-2\left( a\sqrt{1+{{m}^{2}}} \right)m \pm \sqrt{4\left( -{{a}^{2}}-{{a}^{2}}{{m}^{2}}+{{a}^{2}}+{{m}^{2}}{{a}^{2}} \right)}}{2\left( 1+{{m}^{2}} \right)} \\\ & =\dfrac{-am}{\sqrt{1+{{m}^{2}}}} \\\ \end{aligned}$$ Putting $x$ in equation of the tangent (1) we have $y-$coordinate of point of contact as, $$y=m\left( \dfrac{-am}{\sqrt{1+{{m}^{2}}}} \right)+a\sqrt{1+{{m}^{2}}}=\dfrac{a}{\sqrt{1+{{m}^{2}}}}$$ So the point of contact is $\left( \dfrac{-am}{\sqrt{{{m}^{2}}+1}},\dfrac{a}{\sqrt{{{m}^{2}}+1}} \right)$. We match the columns with the obtained result and find the matching as (I)(ii)(Q). (II) The given equation of conic is $${{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}$$ Let us put $y=mx+c$ in the above equation and have, $$\begin{aligned} & {{x}^{2}}+{{a}^{2}}{{\left( mx+c \right)}^{2}}={{a}^{2}} \\\ & \Rightarrow {{x}^{2}}+{{a}^{2}}{{m}^{2}}{{x}^{2}}+2{{a}^{2}}cmx+{{a}^{2}}{{c}^{2}}-{{a}^{2}}=0 \\\ & \Rightarrow \left( 1+{{a}^{2}}{{m}^{2}} \right){{x}^{2}}+2{{a}^{2}}cmx+{{a}^{2}}{{c}^{2}}-{{a}^{2}}=0 \\\ \end{aligned}$$ The above equation is a quadratic equation whose solutions are coordinates point of contacts which have to be rational numbers. So by the condition on discriminant we find , $$\begin{aligned} & D={{\left( 2{{a}^{2}}cm \right)}^{2}}-4\left( 1+{{a}^{2}}{{m}^{2}} \right)\left( {{a}^{2}}{{c}^{2}}-{{a}^{2}} \right)=0 \\\ & \Rightarrow 4\left( {{a}^{4}}{{c}^{2}}{{m}^{2}}-{{a}^{2}}{{c}^{2}}+{{a}^{2}}-{{a}^{4}}{{m}^{2}}{{c}^{2}}+{{m}^{2}}{{a}^{4}} \right)=0 \\\ & \Rightarrow 4\left( -{{a}^{2}}{{c}^{2}}+{{a}^{2}}+{{m}^{2}}{{a}^{4}} \right)=0 \\\ & \Rightarrow {{a}^{2}}+{{a}^{4}}{{m}^{2}}={{a}^{2}}{{c}^{2}} \\\ & \Rightarrow {{c}^{2}}={{a}^{2}}{{m}^{2}}+1 \\\ & \Rightarrow c=\sqrt{{{a}^{2}}{{m}^{2}}+1} \\\ \end{aligned}$$ So the equation of the tangent is $$y=mx+\sqrt{{{a}^{2}}{{m}^{2}}+1}$$ The coordinates of the point of contact of the conic are roots which we find by putting $${{c}^{2}}={{a}^{2}}{{m}^{2}}+1,{{c}^{2}}=\sqrt{{{a}^{2}}{{m}^{2}}+1}$$ from above calculation of intercept. We have the $x-$coordinate of point of contact as, $$\begin{aligned} & x=\dfrac{-2{{a}^{2}}cm\pm \sqrt{4\left( {{a}^{2}}+{{a}^{4}}{{m}^{2}}-{{a}^{2}}{{c}^{2}} \right)}}{2\left( {{a}^{2}}{{m}^{2}}+1 \right)} \\\ & =\dfrac{-2{{a}^{2}}m\sqrt{{{a}^{2}}{{m}^{2}}+1}\pm \sqrt{4\left( {{a}^{2}}+{{a}^{4}}{{m}^{2}}-{{a}^{2}}\left( {{a}^{2}}{{m}^{2}}+1 \right) \right)}}{2\left( {{a}^{2}}{{m}^{2}}+1 \right)} \\\ & =\dfrac{-2{{a}^{2}}m\sqrt{{{a}^{2}}{{m}^{2}}+1}}{2\left( {{a}^{2}}{{m}^{2}}+1 \right)} \\\ & =\dfrac{-{{a}^{2}}m}{\sqrt{{{a}^{2}}{{m}^{2}}+1}} \\\ \end{aligned}$$ Putting $x$ in equation of the tangent (1) we have $y-$coordinate of point of contact as, $$y=m\left( \dfrac{-{{a}^{2}}m}{\sqrt{{{a}^{2}}{{m}^{2}}+1}} \right)+\sqrt{{{a}^{2}}{{m}^{2}}+1}=\dfrac{1}{\sqrt{{{a}^{2}}{{m}^{2}}+1}}$$ So the point of contact is $\left( \dfrac{-{{a}^{2}}m}{\sqrt{{{a}^{2}}{{m}^{2}}+1}},\dfrac{1}{\sqrt{{{a}^{2}}{{m}^{2}}+1}} \right)$. We match the columns with the obtained result and find the matching as (II)(iv)(R)$$$$ (III) The given equation of conic is $${{y}^{2}}=4ax$$ Let us put $y=mx+c$ in the above equation and have, $$\begin{aligned} & {{\left( mx+c \right)}^{2}}=4ax \\\ & \Rightarrow {{m}^{2}}{{x}^{2}}+{{c}^{2}}+2cmx-4ax=0 \\\ & \Rightarrow {{m}^{2}}{{x}^{2}}+\left( 2cm-4a \right)x+{{c}^{2}}=0 \\\ \end{aligned}$$ The above equation is a quadratic equation whose solutions are coordinates point of contact. The $x$ and $y-$coordinates of point of contact in two dimensions have to be rational numbers. So by the condition on discriminant we have, $$\begin{aligned} & D={{\left( 2cm-4a \right)}^{2}}-4{{m}^{2}}{{c}^{2}}=0 \\\ & \Rightarrow 4{{c}^{2}}{{m}^{2}}+16{{a}^{2}}-16cma-4{{c}^{2}}{{m}^{2}}=0 \\\ & \Rightarrow 16{{a}^{2}}-16cma=0 \\\ & \Rightarrow c=\dfrac{a}{m} \\\ \end{aligned}$$ So the equation of the tangent is $$\begin{aligned} & y=mx+\dfrac{a}{m} \\\ & \Rightarrow my={{m}^{2}}x+a \\\ \end{aligned}$$ The coordinates of the point of contact of the conic are roots which we find by putting $c=\dfrac{a}{m},{{c}^{2}}=\dfrac{{{a}^{2}}}{{{m}^{2}}}$ from calculation of intercept above. We have the $x-$coordinate of point of contact as, $$\begin{aligned} & x=\dfrac{-\left( 2cm-4a \right)\pm\sqrt{16{{a}^{2}}-16cma}}{2{{m}^{2}}} \\\ & =\dfrac{-2\left( \dfrac{a}{m} \right)m+4a \pm \sqrt{16{{a}^{2}}-16\left( \dfrac{a}{m} \right)ma}}{2{{m}^{2}}} \\\ & =\dfrac{a}{{{m}^{2}}} \\\ \end{aligned}$$ Putting $x$ in equation of the tangent (1) we have $y-$coordinate of point of contact as, $$y=m\left( \dfrac{a}{{{m}^{2}}} \right)+\dfrac{a}{m}=\dfrac{2a}{m}$$ So the point of contact is $\left( \dfrac{a}{{{m}^{2}}},\dfrac{2a}{m} \right)$. We match the columns with the obtained result and find the matching as (III)(i)(P).$$$$ (IV) The given equation of conic is $${{x}^{2}}-{{a}^{2}}{{y}^{2}}={{a}^{2}}$$ Let us put $y=mx+c$ in the above equation and have, $$\begin{aligned} & {{x}^{2}}-{{a}^{2}}{{\left( mx+c \right)}^{2}}={{a}^{2}} \\\ & \Rightarrow {{x}^{2}}-{{a}^{2}}{{m}^{2}}{{x}^{2}}-2{{a}^{2}}cmx-{{a}^{2}}{{c}^{2}}-{{a}^{2}}=0 \\\ & \Rightarrow \left( 1-{{a}^{2}}{{m}^{2}} \right){{x}^{2}}-2{{a}^{2}}cmx-{{a}^{2}}{{c}^{2}}-{{a}^{2}}=0 \\\ \end{aligned}$$ The above equation is a quadratic equation whose solutions are coordinates point of contacts which have to be rational numbers. So by the condition on discriminant we find, $$\begin{aligned} & D={{\left( -2{{a}^{2}}cm \right)}^{2}}-4\left( 1-{{a}^{2}}{{m}^{2}} \right)\left( -{{a}^{2}}{{c}^{2}}-{{a}^{2}} \right)=0 \\\ &\Rightarrow 4\left( {{a}^{4}}{{c}^{2}}{{m}^{2}}+{{a}^{2}}{{c}^{2}}+{{a}^{2}}-{{a}^{4}}{{m}^{2}}{{c}^{2}}-{{m}^{2}}{{a}^{4}} \right)=0 \\\ & \Rightarrow 4\left( {{a}^{2}}{{c}^{2}}+{{a}^{2}}-{{m}^{2}}{{a}^{4}} \right)=0 \\\ & \Rightarrow {{a}^{2}}-{{a}^{4}}{{m}^{2}}=-{{a}^{2}}{{c}^{2}} \\\ & \Rightarrow 1-{{a}^{2}}{{m}^{2}}=-{{c}^{2}} \\\ & \Rightarrow {{c}^{2}}={{a}^{2}}{{m}^{2}}-1 \\\ & \Rightarrow c=\sqrt{{{a}^{2}}{{m}^{2}}-1} \\\ \end{aligned}$$ So the equation of the tangent is $$y=mx+\sqrt{{{a}^{2}}{{m}^{2}}-1}$$ The coordinates of the point of contact of the conic are roots which we find by putting $${{c}^{2}}={{a}^{2}}{{m}^{2}}-1,c=\sqrt{{{a}^{2}}{{m}^{2}}-1}$$ from above calculation of intercept. We have the $x-$coordinate of point of contact as, $$\begin{aligned} & x=\dfrac{2{{a}^{2}}cm\pm \sqrt{4\left( {{a}^{2}}-{{a}^{4}}{{m}^{2}}+{{a}^{2}}{{c}^{2}} \right)}}{2\left( 1-{{a}^{2}}{{m}^{2}} \right)} \\\ & =\dfrac{2{{a}^{2}}m\left( \sqrt{{{a}^{2}}{{m}^{2}}-1} \right)\pm \sqrt{4\left( {{a}^{2}}-{{a}^{4}}{{m}^{2}}+{{a}^{2}}\left( {{a}^{2}}{{m}^{2}}-1 \right) \right)}}{2\left( 1-{{a}^{2}}{{m}^{2}} \right)} \\\ & =\dfrac{-2{{a}^{2}}m\sqrt{{{a}^{2}}{{m}^{2}}-1}}{2\left( {{a}^{2}}{{m}^{2}}-1 \right)} \\\ & =\dfrac{-{{a}^{2}}m}{\sqrt{{{a}^{2}}{{m}^{2}}-1}} \\\ \end{aligned}$$ Putting $x$ in equation of the tangent (1) we have $y-$coordinate of point of contact as, $$y=m\left( \dfrac{-{{a}^{2}}m}{\sqrt{{{a}^{2}}{{m}^{2}}-1}} \right)+\sqrt{{{a}^{2}}{{m}^{2}}-1}=\dfrac{-1}{\sqrt{1+{{m}^{2}}}}$$ So the point of contact is $$\left( \dfrac{-{{a}^{2}}m}{\sqrt{{{a}^{2}}{{m}^{2}}-1}},\dfrac{-1}{\sqrt{{{a}^{2}}{{m}^{2}}-1}} \right)$$. We match the columns with the obtained result and find the matching as (IV)(iii)(S). **So the correct matches are (IV)(iii)(S), (III)(i)(P), (II)(iv)(R), (I)(ii)(Q).We are asked to choose the only CORRECT combination in the options which is the option C.** **Note:** We note that the equation ${{x}^{2}}+{{y}^{2}}={{a}^{2}}$ is an equation of circle in centre-radius from, ${{x}^{2}}+{{a}^{2}}{{y}^{2}}={{a}^{2}}$ is an equation of ellipse in axis form, ${{y}^{2}}=4ax$ is an equation of parabola in vertex from and ${{x}^{2}}-{{a}^{2}}{{y}^{2}}={{a}^{2}}$ is an equation of hyperbola in axis from. We can directly find tangents and point of contact if we remember the formulae.