Solveeit Logo

Question

Question: Coefficient of x<sup>203</sup> in the expression (x – 1) (x<sup>2</sup> – 2) (x<sup>3</sup> – 3)......

Coefficient of x203 in the expression

(x – 1) (x2 – 2) (x3 – 3)..... (x20 – 20) must be-

A

11

B

12

C

13

D

15

Answer

13

Explanation

Solution

Expression = x . x2. x3..... x20(12x2)\left( 1 - \frac{2}{x^{2}} \right)

(13x3)\left( 1 - \frac{3}{x^{3}} \right)......(120x20)\left( 1 - \frac{20}{x^{20}} \right) = x210 . E

Where E = (11x)\left( 1 - \frac{1}{x} \right) (12x2)\left( 1 - \frac { 2 } { \mathrm { x } ^ { 2 } } \right) (13x3)\left( 1 - \frac{3}{x^{3}} \right)......(120x20)\left( 1 - \frac{20}{x^{20}} \right)

Now coefficient of x203 in original expression = coefficient of x–7 in E

But E = 1 – (1x+2x2+3x3+.....)\left( \frac{1}{x} + \frac{2}{x^{2}} + \frac{3}{x^{3}} + ..... \right)

+(1x.6x6+2x2.5x5+3x3.4x4.....)\left( \frac{1}{x}.\frac{6}{x^{6}} + \frac{2}{x^{2}}.\frac{5}{x^{5}} + \frac{3}{x^{3}}.\frac{4}{x^{4}}..... \right)(1x.2x2.4x4.....)\left( \frac{1}{x}.\frac{2}{x^{2}}.\frac{4}{x^{4}}..... \right)

= Coefficient of x–7

= –7 + 6 + 10 + 12 – 8 = 13.