Solveeit Logo

Question

Question: Coefficient of x in the expansion of \(\left( \sum_{k = 1}^{n}a_{k} \right)^{2} =\) is....

Coefficient of x in the expansion of (k=1nak)2=\left( \sum_{k = 1}^{n}a_{k} \right)^{2} = is.

A

(nn+1)2\left( \frac{n}{n + 1} \right)^{2}

B

(nn+1)4\left( \frac{n}{n + 1} \right)^{4}

C

(nn+1)6\left( \frac{n}{n + 1} \right)^{6}

D

(1+x)5(1 + x)^{5}

Answer

(nn+1)4\left( \frac{n}{n + 1} \right)^{4}

Explanation

Solution

In the expansion of Dr=36+6C135.21+6C234.22\therefore D^{r} = 3^{6} +^{6}C_{1}3^{5}.2^{1} +^{6}C_{2}3^{4}.2^{2} the general term is

(3+2)6(3 + 2)^{6}

Here, exponent of x is =56=(25)3= 5^{6} = (25)^{3}

NrDr=(25)3(25)3=1\therefore\frac{N^{r}}{D^{r}} = \frac{(25)^{3}}{(25)^{3}} = 1 (1+x)n(1 + x)^{n}

Hence coefficient of x is (r+1)osa,(r+2)osa,(r+3)osa(r + 1)osa,(r + 2)osa,(r + 3)osa.