Solveeit Logo

Question

Question: Coefficient of \[{x^{11}}\] in the expansion of \({\left( {1 + {x^2}} \right)^4}{\left( {1 + {x^3}} ...

Coefficient of x11{x^{11}} in the expansion of (1+x2)4(1+x3)7(1+x4)12{\left( {1 + {x^2}} \right)^4}{\left( {1 + {x^3}} \right)^7}{\left( {1 + {x^4}} \right)^{12}} is
A. 1051
B. 1106
C. 1113
D. 1120

Explanation

Solution

Binomial Theorem is used to expand binomial expression that has been raised to some higher power.
Use the general term of binomial expansion to find the coefficient of particular power.
Remember that while multiplying two terms their powers get added only when their bases are the same.
For example: (2x3)(4x4)\left( {2{x^3}} \right)\left( {4{x^4}} \right)
(2×4)x3+4 8x7  \Rightarrow \left( {2 \times 4} \right){x^{3 + 4}} \\\ \Rightarrow 8{x^7} \\\
We know, combination: C(n,r)=n!r!(nr)!C(n,r) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}
Let’s understand the term ‘coefficient’ by an example:
Example: Find the coefficient of x2{x^2} in the expression 2x3+4x2yx2{x^3} + 4{x^2}y - x
The term including x2{x^2} is 4x2y4{x^2}y
The coefficient of x2{x^2} is 4y4y
Thus, the coefficient of x2{x^2} is the remaining part of the term except x2{x^2}.

Complete step-by-step answer:
The binomial expansion:
(a+b)n=C(n,0)an+C(n,1)an1b+C(n,2)an2b2+...+C(n,n)bn{\left( {a + b} \right)^n} = C\left( {n,0} \right){a^n} + C\left( {n,1} \right){a^{n - 1}}b + C\left( {n,2} \right){a^{n - 2}}{b^2} + ... + C(n,n){b^n}
Where ‘a’ is the first term;
‘b’ is the second term;
‘n’ is index;
‘C(n,r)” is the number of ways in which we can choose r objects out of a set containing n different objects such that the order of selection does not matter.
The general term Tk+1{T_{k + 1}} for the (k+1)th{\left( {k + 1} \right)^{th}}term of the binomial expansion is:
Tk+1=C(n,k)ankbk{T_{k + 1}} = C\left( {n,k} \right){a^{n - k}}{b^k}
Thus, the binomial expansion can also be written as
(a+b)n=k=0nC(n,k)ankbk{\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C\left( {n,k} \right){a^{n - k}}{b^k}}

The general term of: (1+x2)4{\left( {1 + {x^2}} \right)^4}
Ta+1=C(4,a)14a(x2)a C(4,a)x2a  {T_{a + 1}} = C\left( {4,a} \right){1^{4 - a}}{\left( {{x^2}} \right)^a} \\\ \Rightarrow C\left( {4,a} \right){x^{2a}} \\\
Binomial expansion of (1+x2)4{\left( {1 + {x^2}} \right)^4}

(1+x2)4=a=04C(4,a)14a(x2)a a=04C(4,a)x2a  {\left( {1 + {x^2}} \right)^4} = \sum\limits_{a = 0}^4 {C\left( {4,a} \right){1^{4 - a}}{{\left( {{x^2}} \right)}^a}} \\\ \Rightarrow \sum\limits_{a = 0}^4 {C\left( {4,a} \right){x^{2a}}} \\\

General term of (1+x3)7{\left( {1 + {x^3}} \right)^7}
Tb+1=C(7,b)17b(x3)b C(7,b)x3b  {T_{b + 1}} = C\left( {7,b} \right){1^{7 - b}}{\left( {{x^3}} \right)^b} \\\ \Rightarrow C\left( {7,b} \right){x^{3b}} \\\
Binomial expansion of (1+x3)7{\left( {1 + {x^3}} \right)^7}

(1+x3)7=b=07C(7,b)17b(x3)b b=07C(7,b)x3b  {\left( {1 + {x^3}} \right)^7} = \sum\limits_{b = 0}^7 {C\left( {7,b} \right){1^{7 - b}}{{\left( {{x^3}} \right)}^b}} \\\ \Rightarrow \sum\limits_{b = 0}^7 {C\left( {7,b} \right){x^{3b}}} \\\

General term of (1+x4)12{\left( {1 + {x^4}} \right)^{12}}
Tc+1=C(12,c)112c(x4)c C(12,c)x4c  {T_{c + 1}} = C\left( {12,c} \right){1^{12 - c}}{\left( {{x^4}} \right)^c} \\\ \Rightarrow C\left( {12,c} \right){x^{4c}} \\\
Binomial expansion of (1+x4)12{\left( {1 + {x^4}} \right)^{12}}

(1+x4)12=c=012C(12,c)112c(x4)c c=012C(12,c)x4c  {\left( {1 + {x^4}} \right)^{12}} = \sum\limits_{c = 0}^{12} {C\left( {12,c} \right){1^{12 - c}}{{\left( {{x^4}} \right)}^c}} \\\ \Rightarrow \sum\limits_{c = 0}^{12} {C\left( {12,c} \right){x^{4c}}} \\\

The expansion of (1+x2)4(1+x3)7(1+x4)12{\left( {1 + {x^2}} \right)^4}{\left( {1 + {x^3}} \right)^7}{\left( {1 + {x^4}} \right)^{12}}
[a=04C(4,a)x2a][b=07C(7,b)x3b][c=012C(12,c)x4c]\Rightarrow \left[ {\sum\limits_{a = 0}^4 {C\left( {4,a} \right){x^{2a}}} } \right]\left[ {\sum\limits_{b = 0}^7 {C\left( {7,b} \right){x^{3b}}} } \right]\left[ {\sum\limits_{c = 0}^{12} {C\left( {12,c} \right){x^{4c}}} } \right]

Step 2: Find the coefficient of x11{x^{11}}
x2a×x3b×x4c=x11{x^{2a}} \times {x^{3b}} \times {x^{4c}} = {x^{11}}
x2a+3b+4c=x11{x^{2a + 3b + 4c}} = {x^{11}}
2a+3b+4c=11\Rightarrow 2a + 3b + 4c = 11
Coefficient of x2a{x^{2a}} =C(4,a) = C\left( {4,a} \right)
Coefficient of x3b{x^{3b}} =C(7,b) = C\left( {7,b} \right)
Coefficient of x4c{x^{4c}} =C(12,c) = C\left( {12,c} \right)
Thus, the coefficient of x2a+3b+4c{x^{2a + 3b + 4c}} =C(4,a)×C(7,b)×C(12,c) = C\left( {4,a} \right) \times C\left( {7,b} \right) \times C\left( {12,c} \right)

Choose the values of a, b, and c such that the sum of 2a, 3b, and 4c is 11
11=1+10 2+9 3+8 4+7 5+6  11 = 1 + 10 \\\ \Rightarrow 2 + 9 \\\ \Rightarrow 3 + 8 \\\ \Rightarrow 4 + 7 \\\ \Rightarrow 5 + 6 \\\

For a = 1, b = 3, c = 0
2(1)+3(3)+4(0)=11\Rightarrow 2\left( 1 \right) + 3\left( 3 \right) + 4\left( 0 \right) = 11
Thus, the coefficient of x2(1)+3(3)+4(0),i.e. x11{x^{2\left( 1 \right) + 3\left( 3 \right) + 4\left( 0 \right)}},i.e.{\text{ }}{x^{11}} =C(4,1)×C(7,3)×C(12,0) = C\left( {4,1} \right) \times C\left( {7,3} \right) \times C\left( {12,0} \right)
4!1!(3)!×7!3!(4)!×12!0!(12)! 4×3!3!×7×6×5×4!3×2×1×4!×12!1(12)! 4×35×1 140  \Rightarrow \dfrac{{4!}}{{1!\left( 3 \right)!}} \times \dfrac{{7!}}{{3!\left( 4 \right)!}} \times \dfrac{{12!}}{{0!\left( {12} \right)!}} \\\ \Rightarrow \dfrac{{4 \times 3!}}{{3!}} \times \dfrac{{7 \times 6 \times 5 \times 4!}}{{3 \times 2 \times 1 \times 4!}} \times \dfrac{{12!}}{{1\left( {12} \right)!}} \\\ \Rightarrow 4 \times 35 \times 1 \\\ \Rightarrow 140 \\\

For a = 2, b = 1, c = 1
2(2)+3(1)+4(1) =4+3+4=11  \Rightarrow 2\left( 2 \right) + 3\left( 1 \right) + 4\left( 1 \right) \\\ = 4 + 3 + 4 = 11 \\\
Thus, the coefficient of x2(2)+3(1)+4(1),i.e. x11{x^{2\left( 2 \right) + 3\left( 1 \right) + 4\left( 1 \right)}},i.e.{\text{ }}{x^{11}} =C(4,2)×C(7,1)×C(12,1) = C\left( {4,2} \right) \times C\left( {7,1} \right) \times C\left( {12,1} \right)
4!2!(2)!×7!1!(6)!×12!1!(11)! 4×3×2!2×1×2!×7×6!6!×12×11!11! 6×7×12 504  \Rightarrow \dfrac{{4!}}{{2!\left( 2 \right)!}} \times \dfrac{{7!}}{{1!\left( 6 \right)!}} \times \dfrac{{12!}}{{1!\left( {11} \right)!}} \\\ \Rightarrow \dfrac{{4 \times 3 \times 2!}}{{2 \times 1 \times 2!}} \times \dfrac{{7 \times 6!}}{{6!}} \times \dfrac{{12 \times 11!}}{{11!}} \\\ \Rightarrow 6 \times 7 \times 12 \\\ \Rightarrow 504 \\\

For a = 4, b = 1, c = 0
2(4)+3(1)+4(0) =8+3+0=11  \Rightarrow 2\left( 4 \right) + 3\left( 1 \right) + 4\left( 0 \right) \\\ = 8 + 3 + 0 = 11 \\\
Thus, the coefficient of x2(4)+3(1)+4(0),i.e. x11{x^{2\left( 4 \right) + 3\left( 1 \right) + 4\left( 0 \right)}},i.e.{\text{ }}{x^{11}} =C(4,4)×C(7,1)×C(12,0) = C\left( {4,4} \right) \times C\left( {7,1} \right) \times C\left( {12,0} \right)

4!4!(0)!×7!1!(6)!×12!0!(12)! 4!4!×7×6!6!×12!(12)! 1×7×1 7  \Rightarrow \dfrac{{4!}}{{4!\left( 0 \right)!}} \times \dfrac{{7!}}{{1!\left( 6 \right)!}} \times \dfrac{{12!}}{{0!\left( {12} \right)!}} \\\ \Rightarrow \dfrac{{4!}}{{4!}} \times \dfrac{{7 \times 6!}}{{6!}} \times \dfrac{{12!}}{{\left( {12} \right)!}} \\\ \Rightarrow 1 \times 7 \times 1 \\\ \Rightarrow 7 \\\

For a = 0, b = 1, c = 2
2(0)+3(1)+4(2) =0+3+8=11  \Rightarrow 2\left( 0 \right) + 3\left( 1 \right) + 4\left( 2 \right) \\\ = 0 + 3 + 8 = 11 \\\
Thus, the coefficient of x2(0)+3(1)+4(2),i.e. x11{x^{2\left( 0 \right) + 3\left( 1 \right) + 4\left( 2 \right)}},i.e.{\text{ }}{x^{11}} =C(4,0)×C(7,1)×C(12,2) = C\left( {4,0} \right) \times C\left( {7,1} \right) \times C\left( {12,2} \right)

4!0!(4)!×7!1!(6)!×12!2!(10)! 4!4!×7×6!6!×12×11×10!2×1×10! 1×7×66 462  \Rightarrow \dfrac{{4!}}{{0!\left( 4 \right)!}} \times \dfrac{{7!}}{{1!\left( 6 \right)!}} \times \dfrac{{12!}}{{2!\left( {10} \right)!}} \\\ \Rightarrow \dfrac{{4!}}{{4!}} \times \dfrac{{7 \times 6!}}{{6!}} \times \dfrac{{12 \times 11 \times 10!}}{{2 \times 1 \times 10!}} \\\ \Rightarrow 1 \times 7 \times 66 \\\ \Rightarrow 462 \\\

Thus, the coefficient of x11{x^{11}} in the expansion of (1+x2)4(1+x3)7(1+x4)12{\left( {1 + {x^2}} \right)^4}{\left( {1 + {x^3}} \right)^7}{\left( {1 + {x^4}} \right)^{12}} is the sum of the coefficient of x2(1)+3(3)+4(0){x^{2\left( 1 \right) + 3\left( 3 \right) + 4\left( 0 \right)}} and coefficient of x2(2)+3(1)+4(1){x^{2\left( 2 \right) + 3\left( 1 \right) + 4\left( 1 \right)}} and coefficient of x2(4)+3(1)+4(0){x^{2\left( 4 \right) + 3\left( 1 \right) + 4\left( 0 \right)}} and coefficient of x2(0)+3(1)+4(2){x^{2\left( 0 \right) + 3\left( 1 \right) + 4\left( 2 \right)}} .
the coefficient of x11=140+504+7+462{x^{11}} = 140 + 504 + 7 + 462
=1113= 1113
The coefficient of x11{x^{11}}in the expansion of (1+x2)4(1+x3)7(1+x4)12{\left( {1 + {x^2}} \right)^4}{\left( {1 + {x^3}} \right)^7}{\left( {1 + {x^4}} \right)^{12}} is 1113.

So, the correct answer is “Option C”.

Note: Index, n of the binomial expression must be a positive integer.
The total number of terms in a binomial expression of index n is n + 1.
Students often choose the same value of r in the expansion instead of different like a, b, and c in the above solution. Then the expression will be
x2r×x3r×x4r=x11{x^{2r}} \times {x^{3r}} \times {x^{4r}} = {x^{11}}
x7r=x11{x^{7r}} = {x^{11}}
7r=11 r=117  7r = 11 \\\ \Rightarrow r = \dfrac{{11}}{7} \\\
This is a wrong step.
The expression (1+x2)4(1+x3)7(1+x4)12{\left( {1 + {x^2}} \right)^4}{\left( {1 + {x^3}} \right)^7}{\left( {1 + {x^4}} \right)^{12}} has the expansion of three different expressions (1+x2)4{\left( {1 + {x^2}} \right)^4}, (1+x3)7{\left( {1 + {x^3}} \right)^7} , and (1+x4)12{\left( {1 + {x^4}} \right)^{12}}.