Solveeit Logo

Question

Question: Co-ordinate of a point equidistant from the points (0,0,0), (a, 0, 0), (0, b, 0), (0, 0, c) is...

Co-ordinate of a point equidistant from the points (0,0,0),

(a, 0, 0), (0, b, 0), (0, 0, c) is

A

(a4,b4,c4)\left( \frac{a}{4},\frac{b}{4},\frac{c}{4} \right)

B

(a2,b4,c4)\left( \frac{a}{2},\frac{b}{4},\frac{c}{4} \right)

C

(a2,b2,c2)\left( \frac{a}{2},\frac{b}{2},\frac{c}{2} \right)

D

(a, b, c)

Answer

(a2,b2,c2)\left( \frac{a}{2},\frac{b}{2},\frac{c}{2} \right)

Explanation

Solution

The required point is the centre of the sphere through the given points.

Let the equation of sphere be

x2+y2+2ux+2vy+2wz+d=0x ^ { 2 } + y ^ { 2 } + 2 u x + 2 v y + 2 w z + d = 0 .....(i)

Sphere (i) is passing through (0, 0, 0), (a, 0, 0), (0, b, 0) and (0, 0, c), d=0\therefore d = 0

a2+2ua=0u=a/2a ^ { 2 } + 2 u a = 0 \Rightarrow u = - a / 2

b2+2vb=0v=b/2b ^ { 2 } + 2 v b = 0 \Rightarrow v = - b / 2

c2+2wc=0w=c/2c ^ { 2 } + 2 w c = 0 \Rightarrow w = - c / 2

Therefore, centre of sphere is (a/2,b/2,c/2)( a / 2 , b / 2 , c / 2 ), which is also the required point.