Solveeit Logo

Question

Question: Circles are drawn through the point (2, 0) to cut intercept of length 5 units on the x-axis. If thei...

Circles are drawn through the point (2, 0) to cut intercept of length 5 units on the x-axis. If their centres lie in the first quadrant, then their equation is.

A

x2+y2+9x+2fy+14=0x ^ { 2 } + y ^ { 2 } + 9 x + 2 f y + 14 = 0

B

3x2+3y2+27x2fy+42=03 x ^ { 2 } + 3 y ^ { 2 } + 27 x - 2 f y + 42 = 0

C

x2+y29x+2fy+14=0x ^ { 2 } + y ^ { 2 } - 9 x + 2 f y + 14 = 0

D

x2+y22fy9y+14=0x ^ { 2 } + y ^ { 2 } - 2 f y - 9 y + 14 = 0

Answer

x2+y29x+2fy+14=0x ^ { 2 } + y ^ { 2 } - 9 x + 2 f y + 14 = 0

Explanation

Solution

The circle g, f, c passes through (2, 0)

\therefore 4+4g+c=04 + 4 g + c = 0 ….(i)

Intercept on x-axis is 2(g2c)=52 \sqrt { \left( g ^ { 2 } - c \right) } = 5

4(g2+4g+4)=25\therefore 4 \left( g ^ { 2 } + 4 g + 4 \right) = 25 by (i)

or (2g+9)(2g1)=0g=92,12( 2 g + 9 ) ( 2 g - 1 ) = 0 \Rightarrow g = - \frac { 9 } { 2 } , \frac { 1 } { 2 }

Since centre (g,f)( - g , - f ) lies in 1st quadrant, we choose g=92g = - \frac { 9 } { 2 } so that g=92- g = \frac { 9 } { 2 } (positive).

c=14\therefore c = 14 , (from (i)).