Solveeit Logo

Question

Question: Circle with centre $(a, b)$ is drawn to cut two circles $x^2+y^2+6x+5=0$ & $x^2+y^2-6y+5=0$ orthogon...

Circle with centre (a,b)(a, b) is drawn to cut two circles x2+y2+6x+5=0x^2+y^2+6x+5=0 & x2+y26y+5=0x^2+y^2-6y+5=0 orthogonally, then:

A

aba=2\frac{a-b}{a}=2 (where a0a\neq 0)

B

aba=3\frac{a-b}{a}=3 (where a0a\neq 0)

C

(a,b)(a, b) lies on line x+y=0x+y=0

D

The circle always passes through two fixed points (1,2)(-1, 2) and (2,1)(-2, 1)

Answer

Options 1, 3, and 4 are correct.

Explanation

Solution

Solution:

  1. Write the equations of the given circles in center‐radius form:

    • x2+y2+6x+5=0x^2+y^2+6x+5=0

      (x+3)2+y2=4(x+3)^2+y^2=4 (center (3,0)(-3,0), radius 2)

    • x2+y26y+5=0x^2+y^2-6y+5=0

      x2+(y3)2=4x^2+(y-3)^2=4 (center (0,3)(0,3), radius 2)

  2. Let the circle with center (a,b)(a,b) (and radius rr) be orthogonal to both. The orthogonality condition is:

    (distance between centers)2=r2+(given circle’s radius)2.\text{(distance between centers)}^2 = r^2 + (\text{given circle's radius})^2.

    For the first circle:

    (a+3)2+b2=r2+4(1)(a+3)^2 + b^2 = r^2+4 \quad \text{(1)}

    For the second circle:

    a2+(b3)2=r2+4(2)a^2+(b-3)^2 = r^2+4 \quad \text{(2)}

    Subtract (1) from (2):

    [a2+(b3)2][(a+3)2+b2]=0.[a^2+(b-3)^2] - [(a+3)^2+b^2] = 0.

    Expanding and simplifying:

    a2+(b26b+9)(a2+6a+9+b2)=6b6a=0,a^2+(b^2 - 6b +9) - (a^2+6a+9+b^2)= -6b-6a = 0,

    which gives:

    a+b=0orb=a.a+b=0 \quad \text{or} \quad b=-a.

    Thus, the center (a,b)(a,b) lies on the line x+y=0x+y=0 [Option (3)].

  3. Now, substituting b=ab = -a into the expression aba\frac{a-b}{a}:

    a(a)a=2aa=2.\frac{a - (-a)}{a} = \frac{2a}{a} = 2.

    So, we get aba=2\frac{a-b}{a}=2 [Option (1)].

  4. To show that the circles always pass through fixed points, express the circle with center (a,a)(a,-a) and radius rr:

    (xa)2+(y+a)2=r2.(x-a)^2+(y+a)^2 = r^2.

    But from (1) (with b=ab=-a):

    (a+3)2+a2=r2+4r2=(a+3)2+a24.(a+3)^2+a^2 = r^2+4 \quad \Rightarrow \quad r^2 = (a+3)^2+a^2-4.

    Thus, the circle is:

    (xa)2+(y+a)2=(a+3)2+a24.(x-a)^2+(y+a)^2 = (a+3)^2+a^2-4.

    For a point (x,y)(x,y) to be common to all such circles (i.e. fixed), the relation must hold for all aa. Writing the expanded form:

    x22ax+a2+y2+2ay+a2=x2+y2+2a2+2a(x+y).x^2 - 2ax + a^2 + y^2 + 2ay + a^2 = x^2+y^2+2a^2+2a(-x+y).

    Since the right side is (a+3)2+a24=2a2+6a+5(a+3)^2+a^2-4 = 2a^2+6a+5, equate the coefficients of like powers of aa:

    • Coefficient of a2a^2: 2=22 = 2 (satisfied)
    • Coefficient of aa: 2(x+y)=62(-x+y)=6 ⟹ yx=3y-x=3
    • Constant term: x2+y2=5x^2+y^2=5

    Thus, the fixed points satisfy:

    y=x+3andx2+(x+3)2=5.y=x+3 \quad \text{and} \quad x^2+(x+3)^2=5.

    Solving:

    2x2+6x+9=52x2+6x+4=0x2+3x+2=0,2x^2+6x+9=5 \quad \Rightarrow \quad 2x^2+6x+4=0 \quad \Rightarrow \quad x^2+3x+2=0, (x+1)(x+2)=0x=1 or 2.(x+1)(x+2)=0 \quad \Rightarrow \quad x=-1 \text{ or } -2.

    Then, y=1+3=2y=-1+3=2 or y=2+3=1y=-2+3=1. Thus, the fixed points are (1,2)(-1,2) and (2,1)(-2,1) [Option (4)].

  5. Option (2) aba=3\frac{a-b}{a}=3 is not true since we found aba=2\frac{a-b}{a}=2.

Explanation (Minimal):

  • Given circles: (x+3)2+y2=4(x+3)^2+y^2=4 and x2+(y3)2=4x^2+(y-3)^2=4.
  • Using orthogonality, equate (a+3)2+b2=a2+(b3)2(a+3)^2+b^2 = a^2+(b-3)^2 giving a+b=0a+b=0 (i.e. center lies on x+y=0x+y=0).
  • Then, aba=2aa=2\frac{a-b}{a} = \frac{2a}{a} = 2.
  • Eliminating parameter aa shows fixed points (1,2)(-1,2) and (2,1)(-2,1) lie on every such circle.