Solveeit Logo

Question

Question: 1. Find the equation of tangent to the circle $x^2 + y^2 - 2ax = 0$ at the point $(a(1 + cos\alpha),...

  1. Find the equation of tangent to the circle x2+y22ax=0x^2 + y^2 - 2ax = 0 at the point (a(1+cosα),asinα)(a(1 + cos\alpha), asin\alpha).
Answer

The equation of the tangent is xcosα+ysinα=a(1+cosα)x\cos\alpha + y\sin\alpha = a(1 + \cos\alpha).

Explanation

Solution

The equation of the circle is x2+y22ax=0x^2 + y^2 - 2ax = 0. The center of the circle is (a,0)(a, 0) and the radius is aa. The given point is P(a(1+cosα),asinα)P(a(1 + \cos\alpha), a\sin\alpha). Using the formula for the tangent to a circle x2+y2+2gx+2fy+c=0x^2 + y^2 + 2gx + 2fy + c = 0 at a point (x1,y1)(x_1, y_1), which is xx1+yy1+g(x+x1)+f(y+y1)+c=0xx_1 + yy_1 + g(x+x_1) + f(y+y_1) + c = 0. For the given circle, g=ag = -a, f=0f = 0, c=0c = 0. Substituting (x1,y1)=(a(1+cosα),asinα)(x_1, y_1) = (a(1 + \cos\alpha), a\sin\alpha): x[a(1+cosα)]+y[asinα]a[x+a(1+cosα)]+0+0=0x[a(1 + \cos\alpha)] + y[a\sin\alpha] - a[x + a(1 + \cos\alpha)] + 0 + 0 = 0. Simplifying this equation leads to xcosα+ysinα=a(1+cosα)x\cos\alpha + y\sin\alpha = a(1 + \cos\alpha).