Solveeit Logo

Question

Question: Choose the value of the hyperbolic trigonometric expression \(\dfrac{{\left[ {1 + \tanh \left( {\dfr...

Choose the value of the hyperbolic trigonometric expression [1+tanh(x2)][1tanh(x2)]\dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} from the given options:
A. ex{e^{ - x}}
B. ex{e^x}
C. 2ex/22{e^{x/2}}
D. 2ex/22{e^{ - x/2}}

Explanation

Solution

In this problem, we are using the formulae of hyperbolic trigonometric function that is tanh(x)=exexex+ex\tanh (x) = \dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}. By using the above-mentioned formula we first find the values of the numerator and denominator of the required hyperbolic trigonometric expression that is [1+tanh(x2)][1tanh(x2)]\dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} and then divide the numerator and denominator for the required value.

Complete step by step answer:
First, let’s find the value of the numerator.
Numerator=[1+tanh(x2)]Numerator = \left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]
Now, let’s substitute the value of tanh(x/2)\tanh (x/2) in the above equation.
Numerator=1+ex2ex2ex2+ex2\Rightarrow Numerator = 1 + \dfrac{{{e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}
On simplification, we get,
Numerator=ex2+ex2+ex2ex2ex2+ex2\Rightarrow Numerator = \dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}} + {e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}
Here, we can cancel the term ex/2{e^{ - x/2}}. We get,
Numerator=2ex2ex2+ex2\Rightarrow Numerator = \dfrac{{2{e^{\dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}

So, the value of the numerator of the required hyperbolic trigonometric expression is 2ex2ex2+ex2\dfrac{{2{e^{\dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}.
Now, let’s substitute the value of the tanh(x/2)\tanh (x/2)in the above equation.
Denominator=[1tanh(x2)]{\text{Denominator}} = \left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]
On simplification, we get
denominator=ex2+ex2(ex2ex2)ex2+ex2\Rightarrow denominator = \dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}} - ({e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}})}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}
Here we can eliminate the term ex/2{e^{x/2}}, we get
denominator=2ex2ex2+ex2\Rightarrow denominator = \dfrac{{2{e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}
So, the value of the denominator of the required hyperbolic trigonometric expression is 2ex2ex2+ex2\dfrac{{2{e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}

Now we require the value of the whole expression.
So, we have, [1+tanh(x2)][1tanh(x2)]=2ex2ex2+ex22ex2ex2+ex2\dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{\dfrac{{2{e^{\dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}}}{{\dfrac{{2{e^{ - \dfrac{x}{2}}}}}{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}}}
Here we can cancel the term ex/2+ex/2{e^{x/2}} + {e^{ - x/2}} in numerator and denominator, so we get
[1+tanh(x2)][1tanh(x2)]=ex2ex2\Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{{e^{\dfrac{x}{2}}}}}{{{e^{ - \dfrac{x}{2}}}}}
On further simplification, we get
[1+tanh(x2)][1tanh(x2)]=ex2×ex2\Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = {e^{\dfrac{x}{2}}} \times {e^{\dfrac{x}{2}}}
[1+tanh(x2)][1tanh(x2)]=ex2+x2=ex\Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = {e^{\dfrac{x}{2} + \dfrac{x}{2}}} = {e^x}
So the required value of the trigonometric expression [1+tanh(x2)][1tanh(x2)]\dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} is ex{e^x}.

Therefore, the correct option is B.

Note: The formula for hyperbolic trigonometric functions: tangent, sine and cosine is exexex+ex\dfrac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}}, ex2ex22\dfrac{{{e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{2} and ex2+ex22\dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}{2} respectively. We can also substitute the value of tanh(x)\tanh (x) as sinhxcoshx\dfrac{{\sinh x}}{{\cosh x}} and then substitute the values of the hyperbolic sine and cosine to get to the required answer.
So, we have, [1+tanh(x2)][1tanh(x2)]=[coshx2+sinhx2coshx2][coshx2sinhx2coshx2]\dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{\left[ {\dfrac{{\cosh \dfrac{x}{2} + \sinh \dfrac{x}{2}}}{{\cosh \dfrac{x}{2}}}} \right]}}{{\left[ {\dfrac{{\cosh \dfrac{x}{2} - \sinh \dfrac{x}{2}}}{{\cosh \dfrac{x}{2}}}} \right]}}
Cancelling the common factors,
[1+tanh(x2)][1tanh(x2)]=coshx2+sinhx2coshx2sinhx2\Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{\cosh \dfrac{x}{2} + \sinh \dfrac{x}{2}}}{{\cosh \dfrac{x}{2} - \sinh \dfrac{x}{2}}}
Substituting values of hyperbolic sine and cosine, we get,
[1+tanh(x2)][1tanh(x2)]=ex2+ex22+ex2ex22ex2+ex22ex2ex22\Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{\dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}{2} + \dfrac{{{e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{2}}}{{\dfrac{{{e^{\dfrac{x}{2}}} + {e^{ - \dfrac{x}{2}}}}}{2} - \dfrac{{{e^{\dfrac{x}{2}}} - {e^{ - \dfrac{x}{2}}}}}{2}}}
Simplifying the expression, we get,
[1+tanh(x2)][1tanh(x2)]=ex2ex2\Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = \dfrac{{{e^{\dfrac{x}{2}}}}}{{{e^{ - \dfrac{x}{2}}}}}
[1+tanh(x2)][1tanh(x2)]=ex\Rightarrow \dfrac{{\left[ {1 + \tanh \left( {\dfrac{x}{2}} \right)} \right]}}{{\left[ {1 - \tanh \left( {\dfrac{x}{2}} \right)} \right]}} = {e^x}
Hence, we arrive at the same answer using both ways.