Question
Question: Choose the value of the hyperbolic trigonometric expression \(\dfrac{{\left[ {1 + \tanh \left( {\dfr...
Choose the value of the hyperbolic trigonometric expression [1−tanh(2x)][1+tanh(2x)] from the given options:
A. e−x
B. ex
C. 2ex/2
D. 2e−x/2
Solution
In this problem, we are using the formulae of hyperbolic trigonometric function that is tanh(x)=ex+e−xex−e−x. By using the above-mentioned formula we first find the values of the numerator and denominator of the required hyperbolic trigonometric expression that is [1−tanh(2x)][1+tanh(2x)] and then divide the numerator and denominator for the required value.
Complete step by step answer:
First, let’s find the value of the numerator.
Numerator=[1+tanh(2x)]
Now, let’s substitute the value of tanh(x/2) in the above equation.
⇒Numerator=1+e2x+e−2xe2x−e−2x
On simplification, we get,
⇒Numerator=e2x+e−2xe2x+e−2x+e2x−e−2x
Here, we can cancel the term e−x/2. We get,
⇒Numerator=e2x+e−2x2e2x
So, the value of the numerator of the required hyperbolic trigonometric expression is e2x+e−2x2e2x.
Now, let’s substitute the value of the tanh(x/2)in the above equation.
Denominator=[1−tanh(2x)]
On simplification, we get
⇒denominator=e2x+e−2xe2x+e−2x−(e2x−e−2x)
Here we can eliminate the term ex/2, we get
⇒denominator=e2x+e−2x2e−2x
So, the value of the denominator of the required hyperbolic trigonometric expression is e2x+e−2x2e−2x
Now we require the value of the whole expression.
So, we have, [1−tanh(2x)][1+tanh(2x)]=e2x+e−2x2e−2xe2x+e−2x2e2x
Here we can cancel the term ex/2+e−x/2 in numerator and denominator, so we get
⇒[1−tanh(2x)][1+tanh(2x)]=e−2xe2x
On further simplification, we get
⇒[1−tanh(2x)][1+tanh(2x)]=e2x×e2x
⇒[1−tanh(2x)][1+tanh(2x)]=e2x+2x=ex
So the required value of the trigonometric expression [1−tanh(2x)][1+tanh(2x)] is ex.
Therefore, the correct option is B.
Note: The formula for hyperbolic trigonometric functions: tangent, sine and cosine is ex+e−xex−e−x, 2e2x−e−2x and 2e2x+e−2x respectively. We can also substitute the value of tanh(x) as coshxsinhx and then substitute the values of the hyperbolic sine and cosine to get to the required answer.
So, we have, [1−tanh(2x)][1+tanh(2x)]=cosh2xcosh2x−sinh2xcosh2xcosh2x+sinh2x
Cancelling the common factors,
⇒[1−tanh(2x)][1+tanh(2x)]=cosh2x−sinh2xcosh2x+sinh2x
Substituting values of hyperbolic sine and cosine, we get,
⇒[1−tanh(2x)][1+tanh(2x)]=2e2x+e−2x−2e2x−e−2x2e2x+e−2x+2e2x−e−2x
Simplifying the expression, we get,
⇒[1−tanh(2x)][1+tanh(2x)]=e−2xe2x
⇒[1−tanh(2x)][1+tanh(2x)]=ex
Hence, we arrive at the same answer using both ways.