Solveeit Logo

Question

Question: Choose the correct value for \(x\) from the given options below if \(x\) satisfies the inverse trigo...

Choose the correct value for xx from the given options below if xx satisfies the inverse trigonometric equation sin(cot1(1+x))=cos(tan1x)\sin \left( {{{\cot }^{ - 1}}\left( {1 + x} \right)} \right) = \cos \left( {{{\tan }^{ - 1}}x} \right).

  1. 12\dfrac{1}{2}
  2. 11
  3. 00
  4. 12\dfrac{{ - 1}}{2}
Explanation

Solution

Hint : We have given an Inverse trigonometric equation to solve. First, we take the Inverse trigonometric expressions and name them accordingly. And then we find the respective trigonometric ratios and equate them to solve. Finally, we end up with an algebraic equation to solve. We have to solve the algebraic equation to find the value of xx.

Complete step-by-step answer :
Given an Inverse trigonometric equation to solve, that is
sin(cot1(1+x))=cos(tan1x)\sin \left( {{{\cot }^{ - 1}}\left( {1 + x} \right)} \right) = \cos \left( {{{\tan }^{ - 1}}x} \right),
Let us name the inverse trigonometric ratios in the equation first.
cot1(1+x)=θ{\cot ^{ - 1}}\left( {1 + x} \right) = \theta , tan1x=φ{\tan ^{ - 1}}x = \varphi
cotθ=1+x,tanφ=x\Rightarrow \cot \theta = 1 + x,\tan \varphi = x
Now let us convert cot\cot ratio into tan\tan .
tanθ=11+x,tanφ=x\Rightarrow \tan \theta = \dfrac{1}{{1 + x}},\tan \varphi = x ,
Now let us convert both tan\tan ratios into sin,cos\sin ,\cos ratios respectively.
sinθ=11+(1+x)2,cosφ=11+x2\Rightarrow \sin \theta = \dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }},\cos \varphi = \dfrac{1}{{\sqrt {1 + {x^2}} }} ,
Now let us apply sin1,cos1{\sin ^{ - 1}},{\cos ^{ - 1}} to the above equations respectively.
θ=sin1(11+(1+x)2),φ=cos1(11+x2)\Rightarrow \theta = {\sin ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right),\varphi = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right) ,
Now let us replace the names with the original names that are,
cot1(1+x)=sin1(11+(1+x)2),tan1x=cos1(11+x2)\Rightarrow {\cot ^{ - 1}}\left( {1 + x} \right) = {\sin ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right),{\tan ^{ - 1}}x = {\cos ^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right) ,
Now let us replace the above values in the given inverse trigonometric equation. We get,
sin(sin1(11+(1+x)2))=cos(cos1(11+x2))\Rightarrow \sin \left( {{{\sin }^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }}} \right)} \right) = \cos \left( {{{\cos }^{ - 1}}\left( {\dfrac{1}{{\sqrt {1 + {x^2}} }}} \right)} \right) ,
We know that the function sin,sin1\sin ,{\sin ^{ - 1}}and cos,cos1\cos ,{\cos ^{ - 1}} are pairs of inverse functions. So we get,
11+(1+x)2=11+x2\Rightarrow \dfrac{1}{{\sqrt {1 + {{\left( {1 + x} \right)}^2}} }} = \dfrac{1}{{\sqrt {1 + {x^2}} }}
So finally, we arrived at an algebraic equation.
Now to find the value of xx we need to solve this algebraic equation.
Let us reciprocal the given equation, we get
1+(1+x)2=1+x2\Rightarrow \sqrt {1 + {{\left( {1 + x} \right)}^2}} = \sqrt {1 + {x^2}},
Now let us square on both sides of the equation, we get
1+(1+x)2=1+x2\Rightarrow 1 + {\left( {1 + x} \right)^2} = 1 + {x^2},
Let us subtract 11 on both sides, we get
(1+x)2=x2\Rightarrow {\left( {1 + x} \right)^2} = {x^2}
Now expand,
1+x2+2x=x2\Rightarrow 1 + {x^2} + 2x = {x^2}
1+2x=0\Rightarrow 1 + 2x = 0
On further simplification, we get
x=12\Rightarrow x = \dfrac{{ - 1}}{2}
Therefore the correct option is 4.
So, the correct answer is “Option 4”.

Note : This is a nice problem. At first, when we see the problem we try to perform some inverse trigonometric functions on the equation and find it clueless. That is the wrong method of solving this problem. This one way of solving this problem. The other way is to solve by using only trigonometric ratios, after we name the inverse trigonometric ratios we can find a relation from the given equation also, by using that equation we can solve the equations directly and end up with the same answer.