Solveeit Logo

Question

Question: Choose the correct option. Justify your choice. \(\left( {1 + \tan \theta + \sec \theta } \right)\...

Choose the correct option. Justify your choice.
(1+tanθ+secθ)(1+cotθcosecθ)=\left( {1 + \tan \theta + \sec \theta } \right)\left( {1 + \cot \theta - \cos ec\theta } \right) =
A) 00
B) 11
C) 22
D)1 - 1

Explanation

Solution

In order to solve the question, we have to write all the terms such as tanθ\tan \theta , secθ\sec \theta ,cotθ\cot \theta and cosecθ\cos ec\theta in terms of sinθ\sin \theta and cosθ\cos \theta .Use the algebraic identity (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} and trigonometric identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1, simplify the equation and get the answer.

Complete step-by-step answer:
Let consider T=(1+tanθ+secθ)(1+cotθcosecθ)T = \left( {1 + \tan \theta + \sec \theta } \right)\left( {1 + \cot \theta - \cos ec\theta } \right)
Now we know that,
tanθ=sinθcosθ , secθ = 1cosθ cotθ=cosθsinθ , cosecθ=1sinθ  \tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}{\text{ , sec}}\theta {\text{ = }}\dfrac{1}{{\cos \theta }} \\\ \cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}{\text{ , }}\cos ec\theta = \dfrac{1}{{\sin \theta }} \\\
Using all the conversions we get,
T=(1+sinθcosθ+1cosθ)(1+cosθsinθ1sinθ)T = \left( {1 + \dfrac{{\sin \theta }}{{\cos \theta }} + \dfrac{1}{{\cos \theta }}} \right)\left( {1 + \dfrac{{\cos \theta }}{{\sin \theta }} - \dfrac{1}{{\sin \theta }}} \right)
Now, we need to simplify this equation
T=(cosθ+sinθ+1cosθ)(sinθ+cosθ1sinθ) T=(sinθ+cosθ+1)(sinθ+cosθ1)sinθcosθ  \Rightarrow T = \left( {\dfrac{{\cos \theta + \sin \theta + 1}}{{\cos \theta }}} \right)\left( {\dfrac{{\sin \theta + \cos \theta - 1}}{{\sin \theta }}} \right) \\\ \Rightarrow T = \dfrac{{\left( {\sin \theta + \cos \theta + 1} \right)\left( {\sin \theta + \cos \theta - 1} \right)}}{{\sin \theta \cos \theta }} \\\
Now if you carefully observe, you may see that we can use the identity (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} where a=sinθ+cosθa = \sin \theta + \cos \theta and b=1b = 1
T=(sinθ+cosθ)2(1)2sinθcosθ\Rightarrow T = \dfrac{{{{\left( {\sin \theta + \cos \theta } \right)}^2} - {{\left( 1 \right)}^2}}}{{\sin \theta \cos \theta }}
Using the identity (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2}+2ab , where a=sinθa = \sin \theta and b=cosθb = \cos \theta , we get
T=sin2θ+cos2θ+2sinθcosθ1sinθcosθT = \dfrac{{{{\sin }^2}\theta + {{\cos }^2}\theta + 2\sin \theta \cos \theta - 1}}{{\sin \theta \cos \theta }}
Using the identity sin2θ+cos2θ=1{\sin ^2}\theta + {\cos ^2}\theta = 1 , we get
T=1+2sinθcosθ1sinθcosθ T=2sinθcosθsinθcosθ=2 T=2  T = \dfrac{{1 + 2\sin \theta \cos \theta - 1}}{{\sin \theta \cos \theta }} \\\ \Rightarrow T = \dfrac{{2\sin \theta \cos \theta }}{{\sin \theta \cos \theta }} = 2 \\\ \Rightarrow T = 2 \\\
So, the correct answer is “Option C”.

Note: The first approach that comes to our mind by watching the equation is to open the brackets and multiply the terms. This is a very good approach but will create a lot of terms and increase the chances of mistakes. So, to avoid that we will convert every term into sinθ\sin \theta and cosθ\cos \theta at first.This question can also be solved by using the triangular trigonometric identities such as tanθ=PB , cotθ = BP , secθ=HB , cosecθ=HP\tan \theta = \dfrac{P}{B}{\text{ , cot}}\theta {\text{ = }}\dfrac{B}{P}{\text{ , }}\sec \theta = \dfrac{H}{B}{\text{ , }}\cos ec\theta = \dfrac{H}{P} , where PP is the perpendicular, BB is the base and HH is the hypotenuse. Another property is also used P2+B2=H2{P^2} + {B^2} = {H^2} for this method.