Solveeit Logo

Question

Question: Choose the correct option \(\int{\left[ {{e}^{a\log x}}+{{e}^{x\log a}} \right]}dx=\\_\\_\\_\\_+x;a,...

Choose the correct option \int{\left[ {{e}^{a\log x}}+{{e}^{x\log a}} \right]}dx=\\_\\_\\_\\_+x;a, x > 1$$$$$ A. \dfrac{{{x}^{a+1}}}{a+1}+\dfrac{{{a}^{x}}}{\log a} B.$\dfrac{{{e}^{a\log x}}}{a\log x}+\dfrac{{{e}^{x\log a}}}{x\log a}
C. \dfrac{{{x}^{a-1}}}{a-1}+{{a}^{x}}\log a$$$$$ D.\dfrac{{{e}^{a\log x}}}{\dfrac{a}{x}}+\dfrac{{{e}^{x\log a}}}{x}$$$$$

Explanation

Solution

We denote the integral as I=[ealogx+exloga]dx=ealogxdx+exlogadx=I1+I2I=\int{\left[ {{e}^{a\log x}}+{{e}^{x\log a}} \right]}dx=\int{{{e}^{a\log x}}}dx+\int{{{e}^{x\log a}}dx}={{I}_{1}}+{{I}_{2}}. We find I1{{I}_{1}} using the standard integral on power on x.x. We find I2{{I}_{2}} by substituting u=xlogau=x\log a and the integrating with respect to u.u. We use the logarithmic identities mlogn=lognmm\log n=\log {{n}^{m}} and elog(f(x))=f(x){{e}^{\log \left( f\left( x \right) \right)}}=f\left( x \right) where they are necessary.

Complete step-by-step answer:
We know the standard integration for power on xx as xn=xn+1n+1+c,nR\int{{{x}^{n}}}=\dfrac{{{x}^{n+1}}}{n+1}+c,n\in R and exponential function ex=ex+c\int{{{e}^{x}}}={{e}^{x}}+c where cc is any constant of integration.

Let us denote the given integral to evaluate in the question as I.I. We have
I=[ealogx+exloga]dxI=\int{\left[ {{e}^{a\log x}}+{{e}^{x\log a}} \right]}dx
We are also given the condition a,x>1a,x > 1 so that logarithms are well-defined. We know from logarithm that for some real numbers m>0,n>1m > 0,n > 1 that mlogn=lognmm\log n=\log {{n}^{m}}. We use this identity in the integrand and proceed to have,
I=[elogxa+elogax]dx\Rightarrow I=\int{\left[ {{e}^{\log {{x}^{a}}}}+{{e}^{\log {{a}^{x}}}} \right]}dx
We know that logarithm and exponential are inverse function which gives us the result elog(f(x))=f(x){{e}^{\log \left( f\left( x \right) \right)}}=f\left( x \right) for any continuous function f(x).f\left( x \right). We use it and proceed to have,
I=[xa+ax]dx\Rightarrow I=\int{\left[ {{x}^{a}}+{{a}^{x}} \right]}dx
We use the rule of sum of two functions in the integrand and have.
I=xadx+axdx=I1+I2(say)....(1)\Rightarrow I=\int{{{x}^{a}}dx}+\int{{{a}^{x}}dx}={{I}_{1}}+{{I}_{2}}\left( \text{say} \right)....\left( 1 \right)
Let us evaluate I1{{I}_{1}} first using the standard integration for power on xx as,
I1=xadx=xa+1a+1+c1{{I}_{1}}=\int{{{x}^{a}}dx}=\dfrac{{{x}^{a+1}}}{a+1}+{{c}_{1}}
Here c1{{c}_{1}}is any real constant of integration. Let us proceed to evaluate I2{{I}_{2}} . We use formula elog(f(x))=f(x){{e}^{\log \left( f\left( x \right) \right)}}=f\left( x \right) for f(x)=af\left( x \right)=a. We have,

& {{I}_{2}}=\int{{{a}^{x}}dx} \\\ & \Rightarrow {{I}_{2}}={{\int{\left( {{e}^{\log a}} \right)}}^{x}} \\\ \end{aligned}$$ Let us use the identity ${{\left( {{r}^{m}} \right)}^{n}}={{r}^{mn}}$ where $r\ne 0,m,n$are real numbers. We have $$\Rightarrow {{I}_{2}}=\int{{{e}^{x\log a}}}dx$$ Let us assign $x\log a=u$, then we differentiate both side with respect to $u$ to get $\log a\dfrac{dx}{du}=1\Rightarrow dx=\dfrac{du}{\log a}$. We substitute in the above integral to have, $$\Rightarrow {{I}_{2}}=\int{{{e}^{u}}\dfrac{du}{\log a}}=\dfrac{1}{\log a}\int{{{e}^{u}}}du$$ We integrate the exponential function with respect to $u$ and have, $$\Rightarrow {{I}_{2}}=\dfrac{1}{\log a}{{e}^{u}}+{{c}_{2}}$$ Here ${{c}_{2}}$ is a real constant of integration. We put back $x\log a=u$ and have, $$\Rightarrow {{I}_{2}}=\dfrac{1}{\log a}{{e}^{x\log a}}+{{c}_{2}}$$ We use logarithmic identities at$m\log n=\log {{n}^{m}}$for $m=x,n=a$ and ${{e}^{\log \left( f\left( x \right) \right)}}=f\left( x \right)$ for $f\left( x \right)={{a}^{x}}$ in the above step and have, $$\begin{aligned} & \Rightarrow {{I}_{2}}=\dfrac{1}{\log a}{{e}^{\log {{a}^{x}}}}+{{c}_{2}} \\\ & \Rightarrow {{I}_{2}}=\dfrac{{{a}^{x}}}{\log a}+{{c}_{2}} \\\ \end{aligned}$$ We put the results of ${{I}_{1}},{{I}_{2}}$ in equation (1) and have, $$\begin{aligned} & \Rightarrow I=\int{{{x}^{a}}dx}+\int{{{a}^{x}}dx}=\dfrac{{{x}^{a+1}}}{a+1}+\dfrac{{{a}^{x}}}{\log a}+{{c}_{1}}+{{c}_{2}} \\\ & \Rightarrow I=\dfrac{{{x}^{a+1}}}{a+1}+\dfrac{{{a}^{x}}}{\log a}+c \\\ \end{aligned}$$ Here $c={{c}_{1}}+{{c}_{2}}.$ **So, the correct answer is “Option A”.** **Note:** We note that we use substitution of variables when we have to integrate composite functions. We must be careful of the confusion of formula $\int{\dfrac{1}{x}}dx=\log \left| x \right|+c$ and also with $\int{{{a}^{x}}}dx=\dfrac{{{a}^{x}}}{\ln a}+c$ where $a > 0,a\ne 1$. We can directly evaluate ${{I}_{2}}$ using the formula $\int{{{f}^{'}}\left( x \right){{e}^{x}}dx=f\left( x \right)+c}$