Solveeit Logo

Question

Question: Choose the correct option and justify your choice: \(\dfrac{2\tan 30{}^\circ }{1+{{\tan }^{2}}30{}^\...

Choose the correct option and justify your choice: 2tan301+tan230=\dfrac{2\tan 30{}^\circ }{1+{{\tan }^{2}}30{}^\circ }=
(A) sin60\sin 60{}^\circ
(B) cos60\cos 60{}^\circ
(C) tan60\tan 60{}^\circ
(D) sin30\sin 30{}^\circ

Explanation

Solution

In this question we will just put the value of tan30\tan 30{}^\circ in the equation and we will try to simplify the equation. We will take L.C.M in the denominator and then we will take the denominator part in the multiplication and then we will cut the common terms and will find the final answer.

Complete step by step solution:
The given equation is 2tan301+tan230\dfrac{2\tan 30{}^\circ }{1+{{\tan }^{2}}30{}^\circ }. We know that the value of tan30\tan 30{}^\circ is 13\dfrac{1}{\sqrt{3}}. Now we will put the value of tan30\tan 30{}^\circ in the equation 2tan301+tan230\dfrac{2\tan 30{}^\circ }{1+{{\tan }^{2}}30{}^\circ }.
Now we can write 2tan301+tan230\dfrac{2\tan 30{}^\circ }{1+{{\tan }^{2}}30{}^\circ } as follows and we will simplify it.
2tan301+tan230=2(13)1+(13)2\dfrac{2\tan 30{}^\circ }{1+{{\tan }^{2}}30{}^\circ }=\dfrac{2\left( \dfrac{1}{\sqrt{3}} \right)}{1+{{\left( \dfrac{1}{\sqrt{3}} \right)}^{2}}}
Now, find the square of 13\dfrac{1}{\sqrt{3}}
=231+13=\dfrac{\dfrac{2}{\sqrt{3}}}{1+\dfrac{1}{3}}
Now take the L.C.M in denominator. Therefore, the above equation we look like:
=2343=\dfrac{\dfrac{2}{\sqrt{3}}}{\dfrac{4}{3}}
Now, just bring the denominator part into multiplication. Therefore, the equation will look like:
=23×34=\dfrac{2}{\sqrt{3}}\times \dfrac{3}{4}
Now, we can write 33 as 3×3\sqrt{3}\times \sqrt{3} in the above equation. Therefore, the equation will look like:
=23×3×34=\dfrac{2}{\sqrt{3}}\times \dfrac{\sqrt{3}\times \sqrt{3}}{4}
Now, just cancel out the common terms and then the above equation will look like:
=32=\dfrac{\sqrt{3}}{2}
Now, we know that the value of sin60=32\sin 60{}^\circ =\dfrac{\sqrt{3}}{2}. The value of cos60\cos 60{}^\circ is12\dfrac{1}{2}. The value of tan60\tan 60{}^\circ is 3\sqrt{3}. The value of sin30\sin 30{}^\circ is 12\dfrac{1}{2}. Therefore, we can say that the answer is sin60\sin 60{}^\circ .

Hence, option (A)(\text{A)} is the correct option.

Note: The important thing is this question is we should be able to recall the value of tan30\tan 30{}^\circ because if we don’t know its value that we will not be able to solve this type of question. So just be careful about it and memorize the required values. The manipulations which we have done in one of the steps in this question are also important.
The values trigonometric functions can be seen in below table:

Trigonometry Ratios Table

Angles (In Degree)| 00{}^\circ | 3030{}^\circ | 4545{}^\circ | 6060{}^\circ | 9090{}^\circ | 180180{}^\circ | 270270{}^\circ | 360360{}^\circ
Angles(In Radians)| 00{}^\circ | π6\dfrac{\pi }{6}| π4\dfrac{\pi }{4}| π3\dfrac{\pi }{3}| π2\dfrac{\pi }{2}| π\pi | 3π2\dfrac{3\pi }{2}| 2π2\pi
sin| 00| 12\dfrac{1}{2}| 12\dfrac{1}{\sqrt{2}}| 32\dfrac{\sqrt{3}}{2}| 11| 00| 1-1| 00
cos| 11| 32\dfrac{\sqrt{3}}{2}| 12\dfrac{1}{\sqrt{2}}| 12\dfrac{1}{2}| 00| 1-1| 00| 11
tan| 00| 13\dfrac{1}{\sqrt{3}}| 11| 3\sqrt{3}| \infty | 00| \infty | 00
cot| \infty | 3\sqrt{3}| 11| 13\dfrac{1}{\sqrt{3}}| 00| \infty | 00| \infty
cosec| \infty | 22| 2\sqrt{2}| 23\dfrac{2}{\sqrt{3}}| 11| \infty | 1-1| \infty
sec| 11| 23\dfrac{2}{\sqrt{3}}| 2\sqrt{2}| 22| \infty | 1-1| \infty | 11.