Solveeit Logo

Question

Question: Choose the correct option and justify your choice; \(\dfrac{{1 - {{\tan }^2}{{45}^0}}}{{1 + {{\tan...

Choose the correct option and justify your choice;
1tan24501+tan2450=\dfrac{{1 - {{\tan }^2}{{45}^0}}}{{1 + {{\tan }^2}{{45}^0}}} =
a. tan900 b. 1 c. sin450 d. 0  a.{\text{ }}\tan {90^0} \\\ b.{\text{ 1}} \\\ c.{\text{ }}\sin {45^0} \\\ d.{\text{ 0}} \\\

Explanation

Solution

Hint – In this question use trigonometric identities which is tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and sin2θ+cos2θ=1cos2θsin2θ=cos2θ{\sin ^2}\theta + {\cos ^2}\theta = 1{\text{, }}{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta , to reach the answer.

Given equation is
1tan24501+tan2450\dfrac{{1 - {{\tan }^2}{{45}^0}}}{{1 + {{\tan }^2}{{45}^0}}}
Method - 1
As we know that tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
Substitute this value in above equation we have
1sin2450cos24501+sin2450cos2450=cos2450sin2450cos2450+sin2450\dfrac{{1 - \dfrac{{{{\sin }^2}{{45}^0}}}{{{{\cos }^2}{{45}^0}}}}}{{1 + \dfrac{{{{\sin }^2}{{45}^0}}}{{{{\cos }^2}{{45}^0}}}}} = \dfrac{{{{\cos }^2}{{45}^0} - {{\sin }^2}{{45}^0}}}{{{{\cos }^2}{{45}^0} + {{\sin }^2}{{45}^0}}}
Now as we know that sin2θ+cos2θ=1cos2θsin2θ=cos2θ{\sin ^2}\theta + {\cos ^2}\theta = 1{\text{, }}{\cos ^2}\theta - {\sin ^2}\theta = \cos 2\theta
cos2450sin2450cos2450+sin2450=cos(2×450)1=cos900\Rightarrow \dfrac{{{{\cos }^2}{{45}^0} - {{\sin }^2}{{45}^0}}}{{{{\cos }^2}{{45}^0} + {{\sin }^2}{{45}^0}}} = \dfrac{{\cos \left( {2 \times {{45}^0}} \right)}}{1} = \cos {90^0}
Now we all know that the value of cos900\cos {90^0} is zero.
1tan24501+tan2450=cos900=0\dfrac{{1 - {{\tan }^2}{{45}^0}}}{{1 + {{\tan }^2}{{45}^0}}} = \cos {90^0} = 0

Method – 2
As we all know that the value of tan450\tan {45^0} is one.
1tan24501+tan2450=111+1=02=0\Rightarrow \dfrac{{1 - {{\tan }^2}{{45}^0}}}{{1 + {{\tan }^2}{{45}^0}}} = \dfrac{{1 - 1}}{{1 + 1}} = \dfrac{0}{2} = 0
Hence, option (d) is correct.

Note – In such types of questions the key concept we have to remember is that always recall the basic trigonometric identities which are stated above and always remember the values of all standard angles, so apply these properties and values in the given equation we will get the required answer.