Solveeit Logo

Question

Mathematics Question on Determinants

Choose the correct answer.
Let A=[1sinθ1sinθ1sinθ1sinθ1]\begin{bmatrix}1&sin\theta&1\\\\-sin\theta&1&sin\theta\\\\-1&-sin\theta&1\end{bmatrix},where0θ2π,thenwhere 0≤\theta≤2\pi,then

A

Det(A)=0Det(A)=0

B

Det(A)(2,)Det (A)∈(2,∞)

C

Det(A)(2,4)Det(A)∈(2,4)

D

Det(A)[2,4]Det(A)∈[2,4]

Answer

Det(A)[2,4]Det(A)∈[2,4]

Explanation

Solution

A=[1sinθ1sinθ1sinθ1sinθ1]\begin{bmatrix}1&sin\theta&1\\\\-sin\theta&1&sin\theta\\\\-1&-sin\theta&1\end{bmatrix}
∴|A|=1$$(1+sin^{2}θ)-sinθ(-sinθ+sinθ)+1(sin^{2}θ+1)
=1+sin2θ+sin2θ+1=1+sin^{2}θ+sin^{2}θ+1
=2+2sin2θ=2+2sin^{2}θ
=2(1+sin2θ)=2(1+sin^{2}θ)

Now,
0θ2π0≤\theta≤2\pi
0sinθ1⇒0≤sin\theta≤1
0sin2θ1⇒0≤sin2\theta≤1
11+sin2θ2⇒1≤1+sin2\theta≤2
11+sin2θ2⇒1≤1+sin2\theta≤2
Det(A)[2,4]∴Det(A)∈[2,4]

The correct answer is D.