Question
Mathematics Question on Determinants
Choose the correct answer.
Let A=1−sinθ−1sinθ1−sinθ1sinθ1,where0≤θ≤2π,then
A
Det(A)=0
B
Det(A)∈(2,∞)
C
Det(A)∈(2,4)
D
Det(A)∈[2,4]
Answer
Det(A)∈[2,4]
Explanation
Solution
A=1−sinθ−1sinθ1−sinθ1sinθ1
∴|A|=1$$(1+sin^{2}θ)-sinθ(-sinθ+sinθ)+1(sin^{2}θ+1)
=1+sin2θ+sin2θ+1
=2+2sin2θ
=2(1+sin2θ)
Now,
0≤θ≤2π
⇒0≤sinθ≤1
⇒0≤sin2θ≤1
⇒1≤1+sin2θ≤2
⇒1≤1+sin2θ≤2
∴Det(A)∈[2,4]
The correct answer is D.