Solveeit Logo

Question

Mathematics Question on Determinants

Choose the correct answer.
If a,b,ca,b,c,are in A.P.,then the determinant
x+2x+3x+2a x+3x+4x+2b x+4x+5x+2c\begin{vmatrix}x+2& x+3& x+2a\\\ x+3& x+4& x+2b\\\ x+4& x+5& x+2c\end{vmatrix} is:

A

0

B

1

C

x

D

2x

Answer

0

Explanation

Solution

The correct answer is A:0
=x+2x+3x+2a x+3x+4x+2b x+4x+5x+2c\triangle=\begin{vmatrix}x+2& x+3& x+2a\\\ x+3& x+4& x+2b\\\ x+4& x+5& x+2c\end{vmatrix}
x+2x+3x+2a x+3x+4x+(a+c) x+4x+5x+2c\begin{vmatrix}x+2& x+3& x+2a\\\ x+3& x+4& x+(a+c)\\\ x+4& x+5& x+2c\end{vmatrix} (2b=a+c2b=a+c as a,ba,b and cc are in AP)
Applying R1R1R2R_1→R_1-R_2 and R3R3R2R_3→R_3-R_2,we have:
Δ=11ac x+3x+4x+(a+c) 11caΔ=\begin{vmatrix}-1& -1& a-c\\\ x+3& x+4& x+(a+c)\\\ 1& 1& c-a\end{vmatrix}
Applying R1R1+R3R_1→R_1+R_3 we have:
Δ=000 x+3x+4x+a+c 11caΔ=\begin{vmatrix}0&0&0\\\ x+3& x+4& x+a+c\\\ 1& 1& c-a\end{vmatrix}
Here, all the elements of the first row (R1)(R_1) are zero.
Hence, we have ∆ = 0.
The correct answer is A