Question
Question: Choose from the given alternative: In any triangle ABC which of the following is equivalent to\(\sin...
Choose from the given alternative: In any triangle ABC which of the following is equivalent tosin2A+sin2B+sin2C ?
(a) 4sinAsinBsinC
(b) 4cosAcosBcosC
(c) 23sinAcosB
(d) 4cosAsinBcosC
Solution
Hint:
Use the formula of summation of two sine terms.
sinC+sinD=2sin(2C+D)cos(2C−D)cosC+cosD=2cos(2C+D)cos(2C−D)
Use angle sum property of triangle:
In any triangle ABC, ∠A+∠B+∠C=180∘. It is simply written as
A + B + C = 180°
Use basic formula of trigonometry like
sin2θ=2sinθcosθsin(90∘−A)=cosAsin(180∘−A)=sinAcos(90∘−A)=sinA
Complete step-by-step answer:
We know that
sinC+sinD=2sin(2C+D)cos(2C−D)
Using the formula mentioned above with C = 2A and D = 2B we get our expression converted as:
sin2A+sin2B+sin2C=(sin2A+sin2B)+sin2C=2sin(22A+2B)cos(22A−2B)+sin2C=2sin(A+B)cos(A−B)+sin2C⋅⋅⋅(ii)
We know that in triangle ABC,
A + B + C = 180°
⇒ A + B = 180° - C
⇒sin(A+B)=sin(180∘−C)⋅⋅⋅(iii)
Also, for any angle θ we have,
sinθ=sin(180∘−θ)
Using the above formula in equation (iii) we get
sin(A+B)=sin(180∘−C)=sinC⋅⋅⋅(iv)
For any angle θ we have
sin2θ=2sinθcosθ
Using this with θ=C we get,
sin2C=2sinCcosC⋅⋅⋅(v)
Using equation (iv) and equation (v) in equation (ii) we get,
sin2A+sin2B+sin2C=2sin(A+B)cos(A−B)+sin2C=2sinCcos(A−B)+2sinCcosC=2sinC(cos(A−B)+cosC)⋅⋅⋅(vi)
We know that for any angle C and D,
cosC+cosD=2cos(2C+D)cos(2C−D)
Using the above formula in equation (vi) we get
sin2A+sin2B+sin2C=2sinC(cos(A−B)+cosC)=2sinC(2cos(2A−B+C)cos(2A−B−C))=4sinCcos(2A−B+C)cos(2A−B−C)⋅⋅⋅(vii)
We have
A + B + C = 180°
⇒A – B + C = 180°-2B
⇒2A−B+C=2180∘−2B=90∘−B⇒cos(2A−B+C)=cos(90∘−B)⋅⋅⋅(viii)
We know for any angle θ,
cos(90∘−θ)=sinθ
Applying this formula in the equation (viii) we get
cos(2A−B+C)=cos(90∘−B)=sinB⋅⋅⋅(ix)
Again,
A – B – C = 90° - 2B – 2C