Solveeit Logo

Question

Question: Choose from the given alternative: In any triangle ABC which of the following is equivalent to\(\sin...

Choose from the given alternative: In any triangle ABC which of the following is equivalent tosin2A+sin2B+sin2C\sin 2A+\sin 2B+\sin 2C ?
(a) 4sinAsinBsinC4\sin A\sin B\sin C
(b) 4cosAcosBcosC4\cos A\cos B\cos C
(c) 32sinAcosB\dfrac{3}{2}\sin A\cos B
(d) 4cosAsinBcosC4\cos A\sin B\cos C

Explanation

Solution

Hint:
Use the formula of summation of two sine terms.
sinC+sinD=2sin(C+D2)cos(CD2) cosC+cosD=2cos(C+D2)cos(CD2) \begin{aligned} & \sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\\ & \cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right) \\\ \end{aligned}
Use angle sum property of triangle:
In any triangle ABCABC, A+B+C=180\angle A+\angle B+\angle C={{180}^{{}^\circ }}. It is simply written as
A + B + C = 180°
Use basic formula of trigonometry like
sin2θ=2sinθcosθ sin(90A)=cosA sin(180A)=sinA cos(90A)=sinA \begin{aligned} & \sin 2\theta =2\sin \theta \cos \theta \\\ & \sin ({{90}^{\circ }}-A)=\cos A \\\ & \sin ({{180}^{{}^\circ }}-A)=\sin A \\\ & \cos ({{90}^{\circ }}-A)=\sin A \\\ \end{aligned}

Complete step-by-step answer:
We know that
sinC+sinD=2sin(C+D2)cos(CD2)\sin C+\sin D=2\sin \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)
Using the formula mentioned above with C = 2A and D = 2B we get our expression converted as:
sin2A+sin2B+sin2C=(sin2A+sin2B)+sin2C =2sin(2A+2B2)cos(2A2B2)+sin2C =2sin(A+B)cos(AB)+sin2C(ii) \begin{aligned} & \sin 2A+\sin 2B+\sin 2C=\left( \sin 2A+\sin 2B \right)+\sin 2C \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin \left( \dfrac{2A+2B}{2} \right)\cos \left( \dfrac{2A-2B}{2} \right)+\sin 2C \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin \left( A+B \right)\cos \left( A-B \right)+\sin 2C\,\,\,\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot (\text{ii)} \\\ \end{aligned}

We know that in triangle ABC,
A + B + C = 180°
⇒ A + B = 180° - C
sin(A+B)=sin(180C)(iii)\Rightarrow \sin \left( A+B \right)=\sin \left( {{180}^{{}^\circ }}-C \right)\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(iii)}
Also, for any angle θ\theta we have,
sinθ=sin(180θ)\sin \theta =\sin \left( {{180}^{{}^\circ }}-\theta \right)

Using the above formula in equation (iii) we get
sin(A+B)=sin(180C)=sinC(iv)\sin \left( A+B \right)=\sin \left( {{180}^{{}^\circ }}-C \right)=\sin C\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(iv)}
For any angle θ\theta we have
sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta
Using this with θ=C\theta =C we get,
sin2C=2sinCcosC(v)\sin 2C=2\sin C\cos C\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(v)}
Using equation (iv) and equation (v) in equation (ii) we get,
sin2A+sin2B+sin2C=2sin(A+B)cos(AB)+sin2C =2sinCcos(AB)+2sinCcosC =2sinC(cos(AB)+cosC)(vi) \begin{aligned} & \sin 2A+\sin 2B+\sin 2C=2\sin \left( A+B \right)\cos \left( A-B \right)+\sin 2C \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin C\cos \left( A-B \right)+2\sin C\cos C \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin C\left( \cos \left( A-B \right)+\cos C \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(vi)} \\\ \end{aligned}

We know that for any angle C and D,
cosC+cosD=2cos(C+D2)cos(CD2)\cos C+\cos D=2\cos \left( \dfrac{C+D}{2} \right)\cos \left( \dfrac{C-D}{2} \right)
Using the above formula in equation (vi) we get
sin2A+sin2B+sin2C=2sinC(cos(AB)+cosC) =2sinC(2cos(AB+C2)cos(ABC2)) =4sinCcos(AB+C2)cos(ABC2)(vii) \begin{aligned} & \sin 2A+\sin 2B+\sin 2C\,=2\sin C\left( \cos \left( A-B \right)+\cos C \right) \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=2\sin C\left( 2\cos \left( \dfrac{A-B+C}{2} \right)\cos \left( \dfrac{A-B-C}{2} \right) \right) \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=4\sin C\cos \left( \dfrac{A-B+C}{2} \right)\cos \left( \dfrac{A-B-C}{2} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(vii)} \\\ \end{aligned}

We have
A + B + C = 180°
⇒A – B + C = 180°-2B
AB+C2=1802B2=90B cos(AB+C2)=cos(90B)(viii) \begin{aligned} & \Rightarrow \dfrac{A-B+C}{2}=\dfrac{{{180}^{{}^\circ }}-2B}{2}={{90}^{\circ }}-B \\\ & \Rightarrow \cos \left( \dfrac{A-B+C}{2} \right)=\cos \left( {{90}^{\circ }}-B \right)\,\,\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(viii)} \\\ \end{aligned}

We know for any angle θ\theta ,
cos(90θ)=sinθ\cos \left( {{90}^{{}^\circ }}-\theta \right)=\sin \theta
Applying this formula in the equation (viii) we get
cos(AB+C2)=cos(90B)=sinB(ix)\cos \left( \dfrac{A-B+C}{2} \right)=\cos \left( {{90}^{\circ }}-B \right)=\sin B\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(ix)}
Again,
A – B – C = 90° - 2B – 2C

& \Rightarrow \dfrac{A-B-C}{2}=\dfrac{{{180}^{{}^\circ }}-2B-2C}{2}={{90}^{\circ }}-B-C \\\ & \Rightarrow \cos \left( \dfrac{A-B+C}{2} \right)=\cos \left( {{90}^{\circ }}-B-C \right) \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\sin \left( B+C \right) \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\sin \left( {{180}^{{}^\circ }}-A \right)\,\, \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=\sin \left( A \right)\,\,\,\,\,\cdot \cdot \cdot \text{(x)} \\\ \end{aligned}$$ Using equation (ix) and equation (x) in equation (vii) we get $\begin{aligned} & \sin 2A+\sin 2B+\sin 2C\,=4\sin C\cos \left( \dfrac{A-B+C}{2} \right)\cos \left( \dfrac{A-B-C}{2} \right) \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=4\sin C\sin B\sin A \\\ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,=4\sin A\sin B\sin C \\\ \end{aligned}$ Hence option (a) is correct. Note: There are lots of trigonometric formulas used. There is a chance of making mistakes in applying those formulas. You can also start taking another two sine terms in a group and then converting them into products of sine and cosine. That will also yield the same result.