Solveeit Logo

Question

Question: Check whether the following equation is True or False, \({x^3} - {y^3} = (x - y)(\omega x - {\omega ...

Check whether the following equation is True or False, x3y3=(xy)(ωxω2y)(ω2xωy){x^3} - {y^3} = (x - y)(\omega x - {\omega ^2}y)({\omega ^2}x - \omega y)
(A). True
(B). False

Explanation

Solution

Hint- In this question, just follow the simple approach that uses the identity x3y3=(xy)(x2+xy+y2){x^3} - {y^3} = (x - y)({x^2} + xy + {y^2}) . After this just solve the second component (x2+xy+y2)({x^2} + xy + {y^2}) of the equation using the Quadratic formula to split that into two components and checking whether the given equation is true or false.

Complete step-by-step solution -
We know that, x3y3=(xy)(x2+xy+y2){x^3} - {y^3} = (x - y)({x^2} + xy + {y^2}) -------(1)
Considering the component (x2+xy+y2)({x^2} + xy + {y^2}) we want to simplify and split this one. For that we will first equate that to 0.
x2+(y)x+y2=0\Rightarrow {x^2} + (y)x + {y^2} = 0
Now relating this to ax2+bx+c=0a{x^2} + bx + c = 0
Here, D=b24acD = {b^2} - 4ac and here we have a=1,b=y,c=y2a = 1,b = y,c = {y^2}
D=(y)24×1×y2=3y2\Rightarrow D = {(y)^2} - 4 \times 1 \times {y^2} = - 3{y^2}
Since, D<0D < 0
The roots are complex.
x=b±D2a\Rightarrow x = \dfrac{{ - b \pm \sqrt D }}{{2a}}
Substituting the values, we get,
x=y±3y22\Rightarrow x = \dfrac{{ - y \pm \sqrt { - 3{y^2}} }}{2}
x=y(1±i32)\Rightarrow x = y\left( {\dfrac{{ - 1 \pm i\sqrt 3 }}{2}} \right)
Now, we know that 1+i32=ω,1i32=ω2\dfrac{{ - 1 + i\sqrt 3 }}{2} = \omega ,\dfrac{{ - 1 - i\sqrt 3 }}{2} = {\omega ^2}
So, x=yωx = y\omega and x=yω2x = y{\omega ^2}
x2+(y)x+y2=0\Rightarrow {x^2} + (y)x + {y^2} = 0 can be rewritten as (xyω)(xyω2)=0(x - y\omega )(x - y{\omega ^2}) = 0
Now, (xyω)(xyω2)=0(x - y\omega )(x - y{\omega ^2}) = 0 can be rewritten as ω3(xyω)(xyω2)=0{\omega ^3}(x - y\omega )(x - y{\omega ^2}) = 0 because ω3=1{\omega ^3} = 1
We can make ω3{\omega ^3} as ω2×ω{\omega ^2} \times \omega such that ω(xyω)×ω2(xyω2)=0\omega (x - y\omega ) \times {\omega ^2}(x - y{\omega ^2}) = 0
It can be rewritten as (ωxyω2)(ω2xyω4)=0(\omega x - y{\omega ^2})({\omega ^2}x - y{\omega ^4}) = 0
(ωxyω2)(ω2xyω3ω)=0\Rightarrow (\omega x - y{\omega ^2})({\omega ^2}x - y{\omega ^3}\omega ) = 0
Now, ω3=1{\omega ^3} = 1
(ωxyω2)(ω2xyω)=0\Rightarrow (\omega x - y{\omega ^2})({\omega ^2}x - y\omega ) = 0
or, (ωxω2y)(ω2xωy)=0(\omega x - {\omega ^2}y)({\omega ^2}x - \omega y) = 0
So, (x2+xy+y2)({x^2} + xy + {y^2}) can be rewritten as (ωxω2y)(ω2xωy)(\omega x - {\omega ^2}y)({\omega ^2}x - \omega y)
Put this in (1)
x3y3=(xy)(ωxω2y)(ω2xωy)\Rightarrow {x^3} - {y^3} = (x - y)(\omega x - {\omega ^2}y)({\omega ^2}x - \omega y)
Hence, the given equation is True.
\therefore Option A. True is the correct answer.

Note- In such types of questions, just keep in mind the algebraic identity like x3y3=(xy)(x2+xy+y2){x^3} - {y^3} = (x - y)({x^2} + xy + {y^2}) , also keep in mind the quadratic formula to find the roots of the quadratic equation and also remember that for complex roots 1+i32=ω,1i32=ω2\dfrac{{ - 1 + i\sqrt 3 }}{2} = \omega ,\dfrac{{ - 1 - i\sqrt 3 }}{2} = {\omega ^2} where ω\omega stands for cube root of unity.