Solveeit Logo

Question

Question: Check whether the differential equation \( (xy)dx - ({x^3} - {y^3})dy = 0 \) is homogeneous or not....

Check whether the differential equation (xy)dx(x3y3)dy=0(xy)dx - ({x^3} - {y^3})dy = 0 is homogeneous or not.

Explanation

Solution

Hint : Firstly, we will convert the given equation into the form of dydx\dfrac{{dy}}{{dx}} . Then we will assume dydx=F(x,y)\dfrac{{dy}}{{dx}} = F(x,y) . Further we will find λF(x,y){\lambda}F(x,y) .Thereafter we will check if it is homogeneous or not.

Complete step-by-step answer :
The given differential equation is
xydx(x3+y3)dy=0xydx - ({x^3} + {y^3})dy = 0
xydx=0+(x3+y3)dyxy\,dx = 0 + ({x^3} + {y^3})dy
dydx=xyx3+y3\dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}}
xyx3+y3=dydx\Rightarrow \dfrac{{xy}}{{{x^3} + {y^3}}} = \dfrac{{dy}}{{dx}}
dydx=xyx3+y3\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}}
Let F(x,y)=dydx=xyx3+y3F(x,y) = \dfrac{{dy}}{{dx}} = \dfrac{{xy}}{{{x^3} + {y^3}}}
Now, I will check, it is homogeneous or not. We will put λ\lambda to xandyxandy in the above F(x,y)F\left( {x,y} \right) ,we will get
F(λx,λy)=λ2xyλ3x3+λ3y3F(\lambda x,\lambda y) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}{x^3} + {\lambda ^3}{y^3}}}
Taking common λ3{\lambda ^3} in denominator, we have
F(λx,λy)=λ2xyλ3(x3+y3)F\left( {\lambda x,\lambda y} \right) = \dfrac{{{\lambda ^2}xy}}{{{\lambda ^3}\left( {{x^3} + {y^3}} \right)}}
F(λx,λy)=xyλ(x3+y3)F(\lambda x,\lambda y) = \dfrac{{xy}}{{\lambda ({x^3} + {y^3})}}
λF(x,y)\ne {\lambda}F(x,y)
\therefore The given equation is not homogeneous

Note : Students must know that if the given equation is a homogeneous then f(x,y)=λF(x,y)f(x,y) = {\lambda}F(x,y) and if the given equation is not homogeneous then F(x,y)λF(x,y)F(x,y) \ne {\lambda}F(x,y) .