Solveeit Logo

Question

Question: Check whether LHS is equal to RHS? \[\sqrt {\dfrac{{{\text{cosec}}\theta - 1}}{{{\text{cosec}}\the...

Check whether LHS is equal to RHS?
cosecθ1cosecθ+1+cosecθ+1cosecθ1=2cosθ\sqrt {\dfrac{{{\text{cosec}}\theta - 1}}{{{\text{cosec}}\theta + 1}}} + \sqrt {\dfrac{{{\text{cosec}}\theta + 1}}{{{\text{cosec}}\theta - 1}}} = 2\cos \theta , Say true or false.
A. True
B. False
C. Ambiguous
D. Data insufficient

Explanation

Solution

Here we will be solving this question by using the LCM (Least common factor) which is used for adding the fractions where denominators are not the same. It is the smallest positive integer that is a multiple of both the numbers of which we are taking LCM. For example, there are two fractions
ab\dfrac{a}{b} and cd\dfrac{c}{d} , then the addition of the terms by using LCM is as below:
ab+cd=a+cbd\dfrac{a}{b} + \dfrac{c}{d} = \dfrac{{a + c}}{{bd}}.
Also, we will be using the formula of (a2b2)=(a+b)(ab)\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right), aa and bb are two variables.

Complete step-by-step solution:
Step 1: We can write the given expression cosecθ1cosecθ+1+cosecθ+1cosecθ1=2cosθ\sqrt {\dfrac{{{\text{cosec}}\theta - 1}}{{{\text{cosec}}\theta + 1}}} + \sqrt {\dfrac{{{\text{cosec}}\theta + 1}}{{{\text{cosec}}\theta - 1}}} = 2\cos \theta as below:
cosecθ1cosecθ+1+cosecθ+1cosecθ1\Rightarrow \dfrac{{\sqrt {{\text{cosec}}\theta - 1} }}{{\sqrt {{\text{cosec}}\theta + 1} }} + \dfrac{{\sqrt {{\text{cosec}}\theta + 1} }}{{\sqrt {{\text{cosec}}\theta - 1} }}
Step 2: Now by taking the LCM of the above expression we get:
(cosecθ1)(cosecθ1)+(cosecθ+1)(cosecθ+1)(cosecθ+1)(cosecθ1)\Rightarrow \dfrac{{\left( {\sqrt {{\text{cosec}}\theta - 1} } \right)\left( {\sqrt {{\text{cosec}}\theta - 1} } \right) + \left( {\sqrt {{\text{cosec}}\theta + 1} } \right)\left( {\sqrt {{\text{cosec}}\theta + 1} } \right)}}{{\sqrt {\left( {{\text{cosec}}\theta + 1} \right)\left( {{\text{cosec}}\theta - 1} \right)} }}
We can write the above product of the same numbers as below:
(cosecθ1)2+(cosecθ+1)2(cosecθ+1)(cosecθ1)\Rightarrow \dfrac{{{{\left( {\sqrt {{\text{cosec}}\theta - 1} } \right)}^2} + {{\left( {\sqrt {{\text{cosec}}\theta + 1} } \right)}^2}}}{{\sqrt {\left( {{\text{cosec}}\theta + 1} \right)\left( {{\text{cosec}}\theta - 1} \right)} }} ,
a×a=a2\because a \times a = {a^2}
Step 3: Now by using the formula of (a2b2)=(a+b)(ab)\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right) in the denominator of the above expression we get:
(cosecθ1)2+(cosecθ+1)2(cosecθ)212\Rightarrow \dfrac{{{{\left( {\sqrt {{\text{cosec}}\theta - 1} } \right)}^2} + {{\left( {\sqrt {{\text{cosec}}\theta + 1} } \right)}^2}}}{{\sqrt {{{\left( {{\text{cosec}}\theta } \right)}^2} - {1^2}} }}
By canceling the squares of the numerator terms with their square root we get:
(cosecθ1)+(cosecθ+1)(cosecθ)212\Rightarrow \dfrac{{\left( {{\text{cosec}}\theta - 1} \right) + \left( {{\text{cosec}}\theta + 1} \right)}}{{\sqrt {{{\left( {{\text{cosec}}\theta } \right)}^2} - {1^2}} }} (a2)=a\because \left( {\sqrt {{a^2}} } \right) = a
By opening the brackets of numerator terms in the above expression we get:
cosecθ1+cosecθ+1(cosecθ)212\Rightarrow \dfrac{{{\text{cosec}}\theta - 1 + {\text{cosec}}\theta + 1}}{{\sqrt {{{\left( {{\text{cosec}}\theta } \right)}^2} - {1^2}} }}
After doing the final addition and subtraction in the numerator of the above expression we get:
2cosecθ(cosecθ)212\Rightarrow \dfrac{{{\text{2cosec}}\theta }}{{\sqrt {{{\left( {{\text{cosec}}\theta } \right)}^2} - {1^2}} }}
Step 4: As we know that cot2θ=cosec2θ1{\cot ^2}\theta = {\text{cose}}{{\text{c}}^2}\theta - 1, so by replacing it in the denominator of the above expression we get:
2cosecθcot2θ\Rightarrow \dfrac{{{\text{2cosec}}\theta }}{{\sqrt {{{\cot }^2}\theta } }}
By canceling the square of the denominator of the above expression with the square root, we get:
2cosecθcotθ\Rightarrow \dfrac{{{\text{2cosec}}\theta }}{{\cot \theta }}
Step 5: As we know that cosecθ = 1sinθ{\text{cosec}}\theta {\text{ = }}\dfrac{1}{{\sin \theta }} and cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }}, so by replacing these terms in the above expression we get:
2sinθsinθcosθ\Rightarrow \dfrac{{{\text{2sin}}\theta }}{{\sin \theta \cos \theta }}
After canceling sinθ\sin \theta from the above expression we get:
2cosθ\Rightarrow \dfrac{{\text{2}}}{{\cos \theta }}
By replacing 1cosθ=secθ\dfrac{1}{{\cos \theta }} = \sec \theta in the above expression we get:
2secθ\Rightarrow 2\sec \theta
So, we can say that LHS does not equal RHS.

B is the correct option.

Note: Students should remember some of the terms mentioned below which plays an important role in solving these types of question:
sinθ=1cosecθ\sin \theta = \dfrac{1}{{{\text{cosec}}\theta }}
cosθ=1secθ\cos \theta = \dfrac{1}{{\sec \theta }}
tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}
tanθ=1cotθ\tan \theta = \dfrac{1}{{\cot \theta }}