Solveeit Logo

Question

Question: Check if the given statement is correct or not: “The value of \(\tan {{75}^{\circ }} = \dfrac{\sqrt{...

Check if the given statement is correct or not: “The value of tan75=3+122\tan {{75}^{\circ }} = \dfrac{\sqrt{3}+1}{2\sqrt{2}}.”
(a) True
(b) False

Explanation

Solution

Hint: To check if the given statement is correct or not, use the trigonometric identity tan(x+y)=tanx+tany1tanxtany\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}. Substitute x=45,y=30x={{45}^{\circ }},y={{30}^{\circ }} in the formula and simplify the expression by substituting the values tan45=1,tan30=13\tan {{45}^{\circ }}=1,\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}}. Simplify the expression and calculate the exact value of tan75\tan {{75}^{\circ }}.

Complete Step-by-step answer:
We have to check if the given statement “The value of tan75=3+122\tan {{75}^{\circ }}=\dfrac{\sqrt{3}+1}{2\sqrt{2}}” is correct or not.
We will calculate the value of tan75\tan {{75}^{\circ }}.
To do so, we will use the trigonometric identity tan(x+y)=tanx+tany1tanxtany\tan \left( x+y \right)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}.
Substituting x=45,y=30x={{45}^{\circ }},y={{30}^{\circ }} in the above formula, we have tan(45+30)=tan45+tan301tan45tan30\tan \left( {{45}^{\circ }}+{{30}^{\circ }} \right)=\dfrac{\tan {{45}^{\circ }}+\tan {{30}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{30}^{\circ }}}.
We know the trigonometric values tan45=1,tan30=13\tan {{45}^{\circ }}=1,\tan {{30}^{\circ }}=\dfrac{1}{\sqrt{3}}. Substituting these values in the above equation, we have tan(45+30)=tan45+tan301tan45tan30=1+1311(13)\tan \left( {{45}^{\circ }}+{{30}^{\circ }} \right)=\dfrac{\tan {{45}^{\circ }}+\tan {{30}^{\circ }}}{1-\tan {{45}^{\circ }}\tan {{30}^{\circ }}}=\dfrac{1+\dfrac{1}{\sqrt{3}}}{1-1\left( \dfrac{1}{\sqrt{3}} \right)}.
Simplifying the above expression, we have tan(45+30)=1+1311(13)=3+131\tan \left( {{45}^{\circ }}+{{30}^{\circ }} \right)=\dfrac{1+\dfrac{1}{\sqrt{3}}}{1-1\left( \dfrac{1}{\sqrt{3}} \right)}=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}.
We will now rationalize the above equation. To do so, we will multiply the numerator and denominator by 3+1\sqrt{3}+1.
Thus, we have tan(75)=3+131=3+131×3+13+1\tan \left( {{75}^{\circ }} \right)=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\times \dfrac{\sqrt{3}+1}{\sqrt{3}+1}.
We know the algebraic identities (a+b)2=a2+b2+2ab{{\left( a+b \right)}^{2}}={{a}^{2}}+{{b}^{2}}+2ab and (x+y)(xy)=x2y2\left( x+y \right)\left( x-y \right)={{x}^{2}}-{{y}^{2}}.
Thus, we have tan(75)=3+131=3+131×3+13+1=(3)2+12+2(1)(3)(3)212\tan \left( {{75}^{\circ }} \right)=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\times \dfrac{\sqrt{3}+1}{\sqrt{3}+1}=\dfrac{{{\left( \sqrt{3} \right)}^{2}}+{{1}^{2}}+2\left( 1 \right)\left( \sqrt{3} \right)}{{{\left( \sqrt{3} \right)}^{2}}-{{1}^{2}}}.
Simplifying the above equation, we have tan(75)=3+131=(3)2+12+2(1)(3)(3)212=3+1+2331=4+232\tan \left( {{75}^{\circ }} \right)=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}=\dfrac{{{\left( \sqrt{3} \right)}^{2}}+{{1}^{2}}+2\left( 1 \right)\left( \sqrt{3} \right)}{{{\left( \sqrt{3} \right)}^{2}}-{{1}^{2}}}=\dfrac{3+1+2\sqrt{3}}{3-1}=\dfrac{4+2\sqrt{3}}{2}.
Thus, we have tan(75)=3+131=4+232=2+3\tan \left( {{75}^{\circ }} \right)=\dfrac{\sqrt{3}+1}{\sqrt{3}-1}=\dfrac{4+2\sqrt{3}}{2}=2+\sqrt{3}.
So, we observe that the given statement is incorrect.
Hence, the answer is False, which is option (b).

Note: We can also solve this question by using the trigonometric identity tan2x=2tanx1tan2x\tan 2x=\dfrac{2\tan x}{1-{{\tan }^{2}}x} and then simplifying the expression using tan150=13\tan {{150}^{\circ }}=\dfrac{-1}{\sqrt{3}}. Solve the quadratic equation by completing the square method or calculating the discriminant method.